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ABSTRACT

Critical infrastructures such as the power grid have been increasingly targeted by advanced

and persistent cyber threats making cyber security one of the nation’s top research priorities.

Traditional information technology (IT)-based cybersecurity measures are no longer adequate

to address such threats, and there is a compelling need to develop a multi-layered defense

strategy that utilizes a combination of infrastructure and application layer security measures.

This dissertation specifically addresses attack-resilient application layer security approaches for

critical wide-area monitoring, protection, and control (WAMPAC) applications. The first com-

ponent, Attack-Resilient State Estimation, addresses the vulnerability of state estimation to

stealthy cyber attacks, and discusses two complementary approaches to enhance its resilience.

A topology-based attack vector that bypasses bad data detection methods and causes loss

of system observability is identified. To mitigate the stealthy attacks on measurements and

topology, an offline attack-resilient measurement design methodology is presented. Further,

an online attack-resilient anomaly detection method that utilized load forecasts, generation

schedules, and synchrophasor data to detect measurement anomalies is described. The sec-

ond component, Testbed-Based Experimentation and Performance Evaluation, addresses the

need to architect, develop, and leverage cyber-physical system (CPS) security testbed environ-

ments specifically for performing realistic attack-defense experimentation for WAMPAC use

cases. An overview of testbed design objectives and design tradeoffs are discussed for different

types of testbeds. A three-layered WAMPAC specific testbed architecture to address critical

research challenges is presented. Finally, three experimental case studies that involved realistic

coordinated cyber attacks on critical WAMPAC applications such as Automatic Generation

Control (AGC) and Remedial Action Schemes (RAS) are described in detail. Further, the

hypothesis that timing of attack actions also plays a critical role in the attack impact severity

is experimentally validated using the PowerCyber testbed.
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CHAPTER 1. INTRODUCTION

The electric power grid is one of the most complex engineering machines ever built by man.

It is a highly interdependent cyber-physical system where the dynamics of one system is tightly

coupled to the other. The power grid, as we know of today, is undergoing a massive trans-

formation in all its constituent segments like generation, transmission and distribution. This

transformation of the grid is driven by the US Department of Energy’s Smart Grid vision[1].

Under this vision, the electric grid is envisaged to leverage advances in technology in several

areas namely, renewable generation, advanced measurement devices like Phasor Measurement

Units (PMU), Plug-in Hybrid Electric Vehicles (PHEV), Advanced Metering Infrastructure

(AMI), and high-speed communication networks to enhance the security, and resiliency of the

grid, at the same time reducing its dependence on non-renewable sources of generation and

reducing energy production costs.

Supervisory Control and Data Acquisition (SCADA) systems are used to monitor and con-

trol the operations of the power grid. Traditionally, SCADA systems were not designed keeping

security as one of the important design criteria. Unfortunately, the exposure of SCADA network

infrastructure to cyber threats has increased enormously due to increased interconnectivity of

SCADA and public network infrastructures. In the last decade, the power grid’s SCADA and

several other critical infrastructures (CI) such as banking, water distribution, oil and natural

gas, etc., are increasingly being targeted by advanced, sophisticated adversaries as they are

critical to national security and societal well-being [2, 3, 4, 5, 6, 7, 8, 9].

National-level cybersecurity policies, standards and guidelines - Several govern-

ment reports have highlighted the various deficiencies in cyber security for the electric sector

that could result in major impacts due to emerging Advanced Persistent Threats (APTs), and

also the urgent need to take measures to protect them [6, 10, 11]. The Department of Energy’s



www.manaraa.com

2

(DOE) Office of Electricity Delivery and Energy Reliability (OE) was setup especially to over-

see activities that enhance the reliability and resilience of the nation’s energy infrastructure.

Recognizing the importance of the cyber security of the Energy Delivery Systems(EDS), the

DOE OE released a roadmap in September 2011 to address the issues and concerns relevant

to energy sector cybersecurity[12]. Also, OE created the Cybersecurity for Energy Delivery

Systems (CEDS) program to assist the energy sector asset owners (electric, oil, and gas) by

developing cybersecurity solutions for energy delivery systems through integrated planning and

a focused R&D effort[13].

DOE, in coordination with the National Institute for Standards and Technology (NIST), and

the North American Electric Reliability Corporation (NERC) developed a cybersecurity Risk

Management Process (RMP) for the electric sector that will enable organizations to proactively

manage cybersecurity risk[14]. Additionally, several efforts like NERC Critical Infrastructure

Protection (CIP) [15], NIST Interagency Report (NISTIR) 7628[16] have been, and are being

made at the national level to ensure that the appropriate standards and safeguards are put in

place to prevent the electric power grid from potential cyber vulnerabilities and threats.

Beyond Infrastructure Security - The recent cyber attacks in Ukraine [9] on a distribu-

tion utility’s power grid control network showed the inadequacy of relying on just infrastructure-

based traditional cybersecurity measures when dealing with a resourceful and sophisticated

adversary. The adversary was able to steal valid credentials through social engineering to get

into the control network and perform reconnaissance and planning for several months. These

types of incidents, similar in nature to insider threats, highlight the need to go beyond a single

layer of security in order to detect and quickly recover from a sophisticated cyber attack. This

need to develop intelligent countermeasures in multiple layers to secure SCADA infrastructure

elements and the fundamental applications they support has been recognized in [17]. Also, the

CEDS program has adopted a strategic and hierarchical approach to fund several R&D projects

that specifically target multiple domains to develop novel solutions that go beyond traditional

Information Technology (IT) infrastructure-based security to leverage the physical properties

of the grid as part of application layer security.
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One of the key motivations of the research presented in this disseration is to go beyond tra-

ditional infrastructure security solutions to develop attack-resilient application layer security

approaches for critical monitoring, protection and control applications, which leverage both

cyber and physical aspects of the grid. Together with developing new cyber-physical attack-

resilient approaches for fundamental applications such as state estimation (SE), the dissertation

also addresses the need to architect, develop, and leverage cyber-physical security testbed en-

vironments for performing realistic attack-defense experimentation to move the research closer

to industry adoption.

1.1 Chapter Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces wide-area mon-

itoring, protection and control (WAMPAC), and then describes the different types of cyber

attacks that could potentially impact WAMPAC. Also, it presents a detailed review of related

work in the context of cyber security of WAMPAC. Chapter 3 and Chapter 4 describe how

coordinated cyber attacks impact state estimation and their mitigation measures in detail.

Chapter 5 discusses in detail CPS security testbed design, architecture, tradeoffs and experi-

mental case studies specifically focusing on WAMPAC applications. Chapter 6 summarizes the

main contributions of the current work and provides potential research directions for future

work.
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CHAPTER 2. WIDE-AREA MONITORING, PROTECTION, AND

CONTROL (WAMPAC)

2.1 Introduction to WAMPAC

WAMPAC systems leverage Phasor Measurements Units (PMUs) and existing SCADA

measurements to gain real-time awareness of current grid operations and also provide real-time

protection and control functions such as RAS, SE, and AGC, besides other emerging applica-

tions such as oscillation detection, transient stability predictions, etc. While communication is

the key to a smarter grid, developing and securing the appropriate cyber infrastructures and

their communication protocols is crucial. WAMPAC can be subdivided further into its con-

stituent components namely, Wide-Area Monitoring (WAM), Wide-Area Protection (WAP),

and Wide-Area Control (WAC).

SE provides the operators with situational awareness of the entire system’s current oper-

ating conditions and are one of the main deployments of WAM systems. The output of SE

is used by several applications in the operations and planning of the power grid, like contin-

gency analysis (CA), security constrained optimal power flow (SCOPF), markets, etc., to name

a few. Figure 3.1 provides a high-level overview of the utility of power system SE and how

SE is performed from the several thousands of SCADA analog and status points gathered ev-

ery few seconds. Emerging WAM applications mainly utilize high sampling rates and accurate

GPS-based timing from PMUs to provide very accurate, synchronized voltage and current mea-

surements. While PMUs provide increasingly accurate situational awareness capabilities, their

full potential will not be realized unless these measurement data can be shared among other

utilities and regulators. The North-American Synchrophasor Initiative network (NASPInet),

is a separate network for PMU data transmission and data sharing including real-time control,
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quality of service and cybersecurity requirements, and is an example of the latest WAM system

deployments to support emerging PMU applications of the future [18].

WAP involves the use of system wide information collected over a wide geographic area to

perform fast decision-making and switching actions in order to counteract the propagation of

large disturbances [19]. The advent of PMUs has transformed protection from a local concept

into a system level wide-area concept to handle disturbances. Several protection applications

fall under the umbrella of WAP, but the most common one among them is Special Protection

Schemes (SPS). NERC defines SPS as an automatic protection system designed to detect

abnormal or predetermined system conditions, and take corrective actions other than, or in

addition, to the isolation of faulted components to maintain system reliability [20]. Such action

may include changes in demand, generation (MW and MVAR), or system configuration to

maintain system stability, acceptable voltage, or power flows. Some of the most common SPS

applications are: generator rejection, load rejection, under frequency load shedding, under

voltage load shedding, out-of step relaying, VAR compensation, discrete excitation control,

and HVDC controls.

Until the advent of PMUs, the only major WAC mechanism in the power grid was AGC.

The AGC functions with the help of tie-line flow measurements, frequency and generation data

obtained from SCADA infrastructure. The purpose of the AGC in a power system is to correct

system generation in accordance with load changes in order to maintain grid frequency at 60

Hz. Currently, the concept of real-time WAC using PMU data is still in its infancy and there are

no standardized applications that are widely deployed on a system wide scale, though there are

several pilot projects in that area [21]. Some of the potential WAC applications are secondary

voltage control using PMU data, Static VAR Compensator (SVC) control using PMUs, and

inter-area oscillation damping.

2.2 WAMPAC - A Generic Architecture

Figure 2.1 shows a generic WAMPAC architecture with the various components involved

[22]. The system conditions are measured using measurement devices (relays and PMUs), these

measurements are communicated to a WAMPAC controller to determine appropriate control



www.manaraa.com

6

Figure 2.1 Generic WAMPAC architecture

actions for economic operations or in some cases for contingencies. Then, the appropriate

control actions are initiated, usually through high-speed communication links. The inherent

wide-area nature of these schemes presents several vulnerabilities in terms of possible cyber

intrusions to hinder or alter the normal functioning of these schemes.

Even though the WAMPAC applications like SE,AGC or SPS are designed to cause minimal

or no impact to the power system under failures, they are not designed to handle failures due

to malicious events like cyber attacks. Also, as more and more applications are added in the

power system, it introduces unexpected dependencies in the operation of the various schemes

and this increases the risk of increased impacts like system wide collapse, due to a cyber

attack. It therefore becomes critical to reexamine the design of the WAMPAC applications

with a specific focus on cyber-physical system security.

Figure 2.1 also presents a control systems view of the power system and the WAMPAC

applications at the control center. The power system is the plant under control, where the

parameters like currents and voltages at different places are measured using sensors (PMUs)

and sent through the high-speed communication network to the WAMPAC controller for ap-

propriate decision-making. The controller decides based on the system conditions and sends
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corresponding commands to the actuators which are the generators, protection elements and

VAR control elements like SVC and FACTS. There are different places where a cyber attack

can take place in this control system model. The cyber attack could affect the delays expe-

rienced in the forward or the feedback path or it could directly affect the data corresponding

to sensors, the actuators or the controller. Figure 2.1 also indicates the attack points on this

control system model through the lightning bolts.

2.2.1 Cyber Attack Classification

Conceptually, we identify three classes of attacks on this control system model for WAMPAC.

They are timing-based attacks, integrity attacks and replay attacks.

Timing attacks: Timing is a crucial component in any dynamic system (e.g. protection

scheme) and typically the control actions should be executed on the order of milli-seconds

after the disturbance. Therefore, WAMPAC applications cannot tolerate any type of delay in

communications and therefore are vulnerable to timing-based attacks. Timing attacks tend

to flood the communication network with packets and this slows the network down in several

cases and also shuts them down in some cases, both of which are not acceptable. These types

of attacks are commonly known as DoS attacks.

Data Integrity Attacks: Data integrity attacks are attacks where the data is corrupted

in the forward or the reverse path in the control flow. This means that there could be an attack

which directly corrupts the sensor data (measurement data), or the control data (commands

given to the generators, protection elements or the VAR control elements). This translates to

actions like blocking of the trip signals in scenarios where the controller actually sent a trip

command to the protection elements or the controller commanded to increase VAR injection

while the attack caused the injection to decrease or vice versa.

Replay Attacks: Replay attacks are similar to data integrity attacks, where the attacker

manipulates the measurements or the control messages by hijacking the packets in transit

between the measurement device and the control center. Several of the modern communication

protocols have replay protection features that make it extremely hard to execute a successful

replay attack. However, in some cases where legacy protocols are used, a replay attack could



www.manaraa.com

8

be possible even under encrypted communication as the replayed packets are valid packets with

the messages data integrity being intact except for the timestamp information.

2.2.2 Coordinated Attacks on WAMPAC

Coordinated attacks are cases where several different attack actions can be coordinated in

space and/or time. For example, elements that do not share electrical or physical relationships

can be forced to fail simultaneously, or in a staggered manner at appropriate time intervals

depending on the system response, which could result in unanticipated consequences. Intelligent

coordinated attacks can significantly affect a power system’s security and adequacy by negating

the effect of system redundancy and other existing defense mechanisms after an initial attack.

NERC has instituted the Cyber Attack Task Force (CATF) to gauge system risk from such

attacks and develop feasible, and cost-effective mitigation techniques. NERC CATF identifies

intelligent coordinated cyber attacks as a category of events that are classified as High-Impact

Low-Frequency (HILF), which cause significant impacts to power system reliability beyond

acceptable margins [11]. Therefore, the traditional approach to determining system reliability

with (N-1) contingencies and a restricted set of multiple contingencies is no longer sufficient

and new approaches have to be developed to deal with plausible (N-k) contingencies.

Figure 2.2 presents several sample coordinated attack scenarios on several important WAMPAC

applications like SE, AGC, RAS respectively, and their impacts. A coordinated data integrity

attack on a key monitoring application like SE could be achieved by compromising the vari-

ous meters that measure or transfer the power flow measurements to the control center. This

spatial coordinated attack results in a poor situational awareness of the power system and also

could lead to incorrect system dispatch leading to line overloads and market impacts in terms

of uneconomical generation [23]. Similarly, a coordinated data integrity attack on AGC would

cause an imbalance in system generation and load resulting in frequency imbalance and relia-

bility impacts [24]. Finally, we can consider the case of a coordinated attack on RAS, which

are part of WAP. The attack scenario is a combination of data integrity and DoS attacks on the

protection relays and substation communications happening in different locations, staggered in
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time. Such an attack impacts reliability and could cause cascading outages depending on the

system loading [25].

Figure 2.2 Sample coordinated attack scenarios in WAMPAC

2.3 Literature Review

This section identifies the related work in the context of cyber security of WAMPAC,

especially pertaining to cyber attacks on SE and is grouped based on the specific focus of the

work.The importance of SE in providing situational awareness and its dependence on wide-area

measurements has been a major driving factor for the study of how cyber attacks impact SE.

Existing literature in this area addresses one or more main themes, identifying attack vectors,

characterizing impacts and proposing mitigation methods.

2.3.1 Cyber Security Issues in WAMPAC

The transition towards a smarter electric grid has spurred a lot of interest in cybersecu-

rity research for the power infrastructure. Several papers have been published studying the

applicability of cyber security for power system operations like AGC, voltage control, SE, dis-
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tribution applications like AMI and infrastructure elements like Phasor Data Concentrators

(PDC). In [24], the authors study the impact of data integrity attacks on the AGC system op-

eration and quantify the attack impacts in terms of load-generation imbalance and frequency

violations. Similarly, in [26], the authors extend the data integrity attack model described in

[24] to the voltage control loop and study how data integrity attacks on voltage control devices

like FACTS, SVC, etc. can cause abnormal voltages, violating NERC reliability standards.

The various cyber security issues related to confidentiality, integrity, availability, etc. for AMI

have been discussed in [27]. Paper [28] discusses security issues for Phasor Data Concentrators

and also presents a scenario of compromising the database which stores PMU data through a

SQL-injection attack.

2.3.2 Cyber Attacks on SE

State Estimators rely on wide-area measurement data from SCADA networks to construct

a real-time network topology based on the breaker and switch statuses, and also validate

the analog measurements from the Remote Terminal Units (RTU) to provide accurate state

estimates. The dependence on wide-area measurements creates an inherent vulnerability to

data denial or manipulation through malicious cyber attacks either at the measurement source

or in transit. The attacks could target either the integrity of the topology measurements or the

analog measurements in the SCADA data, or it could also target the availability of the data

at the control center. Integrity-based attacks require much more information than the actual

attack, such as attack locations and attack values to remain undetected, whereas DoS attacks

do not require too much information other than the target of the attacks.

2.3.2.1 False Data Injection Attacks

The paper by Liu et al. was one of the first works to look at the vulnerability of state

estimation to cyber attacks is [23], where the attacker is assumed to possess knowledge about

measurement configuration to create undetectable attacks. The paper characterizes attacks into

two major types: random and targeted attacks, where targeted attacks aim to inject specific

errors into selected state variables. The paper also identifies the potential attack vectors given
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a particular attacker’s resource limitation and the characterizes the impacts in terms of injected

error in the state variables. Bobba et al. proposes a method to detect such attacks by protecting

a set of selected measurements and independently verifying certain state variables [29].

Kosut et al. developed a heuristic in [30] to find the attacks that impact bad data detection

the most, given a set of compromised meters under a particular attacker. This paper also

presents a new bad data detector which outperforms the traditional bad data detector. The

work done by Kim et al. in [31] looks at protection of a subset of measurements from data

injection attacks, given the attacker model as proposed in [23], under an optimization framework

and also proposes an algorithm to aid in PMU placement on strategic buses in the network.

Le et al. present a false data injection attack, against the state estimation in deregulated

electricity markets in [32]. They show that such a class of attacks bypass the bad data mea-

surement detection, and can lead to profitable financial misconduct by affecting the locational

marginal prices (LMP). The paper also presents a heuristic to find out the most profitable

attack in terms of an optimization problem.

Giani et al. proposes an algorithm to determine the presence of attacks that involve minimal

compromise of meters given a measurement configuration and also proposes a measurement

placement algorithm to tolerate such attacks [33]. Dan et al. consider the attack template

as proposed by [23], define a security metric that quantifies the cost to perform a stealthy

attack and also an algorithm to compute the attack vectors [34]. The paper also proposes

two approaches to place encryption devices to maximize security. Teixerira et al. considers

a scenario where the attacker possess only a perturbed model of the system and proposes a

method to find stealthy deception attacks [35]. The paper also identifies the limits of the attack

vector for commonly used bad data detection methods in state estimators.

The papers mentioned previously [23, 29, 30, 33, 32], use the DC power flow model in their

analysis of the false data injection attack on the state estimator. Hug et al. uses AC power flow

analysis to distinguish their analysis and present a graph-based algorithm to find stealthy data

injection attacks [36]. The paper also provides a comparative analysis of the errors introduced

when using DC vs. AC power flow model and identifies that it is very difficult to create a truly

undetectable attack due to the non-linearity of the power flow equations.
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2.3.2.2 Topology-based attacks

Integrity-based attacks, commonly known as false data injection attacks, require knowledge

about the measurement configuration in order to remain undetected as bad measurements due

to measurement errors are inherently filtered out by Bad Data Detection(BDD) in SE. All of

the existing literature discussed previously use the attack model as defined in [23]. However,

all these papers make certain assumptions. The pertinent ones are

1. Network topology is valid and error free.

2. Measurement redundancy is adequate.

3. Only analog measurements (injection and flow) have errors.

Though these assumptions are reasonable to study some aspects of this problem, some of

these assumptions do not hold considering the exposure of the SCADA network to cyber-based

threats. Especially, the assumptions concerning valid network topology and errors only in

analog measurements. Therefore, it becomes really critical to study the effects of how topology

errors created by cyber attacks impact the SE and power system operations.

As part of the dissertation, we identified another type of attacks that are aimed at cre-

ating topology errors by virtue of knowledge of measurement configuration while remaining

undetected [37]. This paper addresses the problem of how topology errors, in particular, the

branch status errors, can be created by malicious adversaries through intelligent cyber attacks.

We have shown how an unobservable topology error can be created by manipulating the field

devices corresponding to the critical measurements or critical branches in the SCADA mea-

surement set configuration. Also, we have shown how the impacts of such an attack can be

analyzed through system operating limit (SOL) violations on the altered network topology.

More details about the work is presented in Section 3.2.

2.3.2.3 DoS attacks

One could also identify another type of attack vector where the attacker just denies carefully

chosen measurements from reaching the control center forcing the state estimator to lose total
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system observability. SE normally handles loss of observability (critical measurements) by using

pseudo-measurements, which are obtained generally from short-term forecasts or from historical

and recent data. Pseudo-measurements are less accurate than regular measurements, and this

directly contributes to a loss of accuracy in state estimates if done improperly [38]. Loss of

SE accuracy when the system is operating under heavy system loads could impact operator

decisions adversely. Though these type of attacks have not been not studied separately, the

mitigation methods for these types of attacks are similar to the ones employed for topology-

based attacks.

2.3.3 Measurement Design

We briefly introduce the measurement design problem before reviewing the existing litera-

ture in this area. Typically, the objective of measurement design problem is to minimize the

cost and the number of new measurements added to the measurement configuration such that it

satisfies two main constraints. One is to maintain total system observability under all credible

contingencies. The other is to satisfy accuracy requirements of the state estimates. Another

byproduct of these two is the bad data detection capability of the estimator. An observable

system with a reasonable accuracy of estimates ensures good bad data detection capability. It

is to be noted here that the under the context of measurement design, contingencies could be

actual contingencies that involve a change in the actual topology of the system, or situations

where there is a loss of measurement availability at the control center.

The problem of measurement design has been very well researched and there is an excel-

lent wealth of literature on this topic. Sarma et al. proposed a measurement design process

that included multiple phases: (1) satisfying acceptable redundancy, (2) satisfying basic ob-

servability, (3) elimination of critical measurements, and (4) measurement placement to handle

measurement loss of single RTU failure [39]. Celik and Liu proposed an incremental measure-

ment placement algorithm that created a ranking of buses with low accuracy and identified

candidate measurements which are not leverage points to add to the measurement set until a

desired accuracy is obtained [40].
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Baran et al. proposed a meter placement method that addressed multiple aspects in the

measurement design whilst also minimizing the cost of meter deployments [41]. The basic mea-

surement placement addresses accuracy constraints in the form of a system accuracy index.

The subsequent stages address meter placement for reliability using a marginal cost approach

and meter placement for bad data detection eliminating critical measurements. More recently,

Magnago and Abur presented a measurement placement approach that handled loss of any sin-

gle branch measurement or single contingency without loosing network observability [42]. The

approach identifies candidates for all situations where observability is lost and minimizes the

cost of candidate measurements by formulating a binary integer linear optimization problem.

In the last few years, the papers on measurement design have focussed on optimal place-

ment of PMUs for state estimation. Gou presented a generalized integer linear programming

formulation for optimal PMU placement that included cases for redundant placement, complete

and incomplete observability [43]. The paper introduced the concept of depth of one and depth

of two unobservability, where the neighboring buses of any unobservable buses are rendered

observable by PMU placement. Abbasy et al. also proposed a binary integer linear program-

ming formulation for optimal PMU placement which also considers conventional measurement

placements and loss of multiple PMUs [44]. Chakrabarti et al. proposed a binary search-based

algorithm for determining the minimal number of PMUs to ensure full observability including

single branch outage cases [45]. All the above papers on PMU placement assume that a PMU

installation at a bus would enable measurement of all branch currents in the bus, whereas

Emami et al. propose an optimal PMU placement method for branch PMUs that enable volt-

age and current measurement only on one branch [46]. The method also addresses reliability

aspects by considering loss of PMUs or branch outages into placement constraints, ensuring

complete observabiliity.

Most of the literature mentioned previously, do not address the issue of loss of multiple

measurements, except one or two of the earlier papers that addressed loss of RTU’s as part of the

problem formulation. Most of the papers considered the loss of a single branch or measurement

to be sufficient for measurement design. However, we strongly believe that measurement design
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also needs to consider loss of multiple critical measurements, or even loss of measurements from

multiple RTU’s due to targeted cyber attacks.

If we consider the possibility of the loss of multiple measurements or loss of multiple RTU’s

simultaneously, we would encounter situations where there is incomplete observability and in

order to handle such cases we typically resort to the use of pseudo-measurements. It is well

known that pseudo-measurements are often generated with the help of forecast-based predic-

tions or historical data, and depending on the load level and the quality of past measurements,

pseudo-measurement quality also varies. This in turn influences how much variance is added

in the state estimates. It has been shown that if pseudo-measurements are not used properly,

their errors can impact the estimates of other state variables also [38]. We believe that this is

another reason to rethink traditional measurement design process as not all cases of unobserv-

ability should be handled with pseudo-measurements. With more and more push for utilizing

transmission lines to their maximum capacity, errors in estimation of line flows impact opera-

tional decisions to a greater extent. Therefore, we believe that an attack-resilient measurement

design process should include a careful consideration of the type of contingencies that could

occur, loss of multiple critical measurements, and the use of pseudo-measurements to address

situations with incomplete observability.

2.3.4 Mitigation of Cyber Attacks on SE

While there are enough papers in the area of identifying possible attack vectors and impacts

on the state estimates, markets and operations, not enough work has been done to address the

problem of detecting and mitigating stealthy cyber attacks on state estimators.

Irrespective of the type of cyber attacks, the more there are measurements in the mea-

surement configuration, the more resilient state estimator becomes, and the harder it gets

for the adversary to execute a stealthy attack. The proposed solutions by existing literature

fundamentally address two aspects: adding more measurements into the estimation process, in-

directly protecting certain essential measurements from being corrupted, so that the adversary

has to manipulate even more measurements to remain stealthy against the bad data detectors.

Another way is by ensuring the security of enough number of essential measurements in the
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measurement configuration by performing additional infrastructure security mechanisms such

as encryption, authentication of the data. This problem of making the estimator robust to

measurement corruption (natural and malicious) and measurement loss is known as the ‘mea-

surement design’ problem. A well-designed measurement configuration in state estimation will

make the possibility of creating a stealthy cyber attack very slim.

The existing category of solutions are mostly reliant on an efficient measurement design,

which is an offline problem to increase the redundancy, accuracy and bad data detection ca-

pabilities of the state estimators. Section 3.3 proposes an attack-resilient measurement design

methodology for SE to increase robustness against data injection and DoS attacks.

A well-designed measurement system increases the degree of difficulty of an attack, but

cannot completely rule out the possibility of a highly skilled attack. In contrast to the former

solution type, which is an offline process, the key in the second solution type is to use informa-

tion that is independent of the SCADA data to validate the state estimates. We believe that

to the best of our knowledge there is no prior work on an online anomaly detection method to

detect cyber attacks and validate the state estimates and detect anomalies. Chapter 4 proposes

an online anomaly detection method to leverage the information obtained from load forecasts,

generation schedules, and real-time synchrophasor data to provide a coarse real-time validation

for the state estimates produced from untrusted SCADA measurements, thereby enabling the

detection of false data injection attacks.

2.3.5 Cyber-Physical System Security Testbeds

The development of CPS security testbeds and cybersecurity experimentation leveraging

CPS testbeds has been an active research topic over the last few years. Several educational

institutions and research laboratories are setting up individual CPS security testbeds for vali-

dating their research and are also exploring possibilities for CPS testbed federation to perform

large-scale, high fidelity, hardware-in-the-loop cyber attack/defense experiments.

The National SCADA Testbed (NSTB) at Idaho National Laboratory, is one of the ear-

liest collaborative testbed efforts across several U.S national laboratories where actual power

system resources (generation and transmission lines), and the associated cyber system compo-
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nents were used to perform vulnerability assessments and impact analysis studies [47]. Sandia

National Laboratory houses the Virtual Control System Environment (VCSE), which is a cyber-

physical testbed with a hybrid mix of simulated, emulated and physical system components

for attack-defense experimentation [48]. The powerNET testbed at Pacific Northwest National

Laboratory (PNNL) leverages a combination of cloud-based computing platform for virtualiza-

tion, real-time power system simulators, and a variety of field equipment such as multi-function

protection relays and PMUs from multiple vendors to provide a highly customizable and config-

urable environment for cyber-physical security experimentation [49]. The University of Illinois

at Urbana-Champaign hosts the Virtual Power System Testbed (VPST), consisting of a mix

of simulated, emulated and physical components to perform cyber security research across a

wide range of topics including vulnerability assessments, communication protocol and security

product testing and research validation [50].

The PowerCyber CPS security testbed at Iowa State University consists of a hybrid mix of

industry grade SCADA hardware and software, emulators for wide-area network routing and

real-time power system simulators, which enable a high-fidelity, hardware-in-the-loop, cyber-

physical testbed environment for cyber-physical security research and experimental validation

studies [25]. The SCADA testbed at the University College, Dublin is used to perform experi-

ments on intrusion detection and anomaly detection related to power grid cyber security [51].

Mississippi State University consists of a SCADA security testbed, which is used to perform

intrusion detection and security testing of PMUs and PDCs [52].

The University of Southern California‘s Information Sciences Institute hosts the DETER

cyber security testbed, which is a large-scale testbed for cyber security experimentation, but it

does not contain physical system resources, like relays and phasor measurement units, which

some of the earlier testbeds mentioned have for hardware-in-the-loop experimentation [53].

The Smart Grid testbed at Washington State University consists of several hardware resources

like PMUs and PDCs interfaced with a real-time power system simulator, but is primarily

focused on developing new power system monitoring and control algorithms [54]. Other notable

research efforts that leverage CPS security testbeds for experimentation on telecommunication,

networking, and intrusion detection includes the European CRUTIAL project [55], TASSCS
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testbed at the University of Arizona [56], SCADASim testbed at the Royal Melbourne Institute

of Technology [57].

2.4 Dissertation Contributions

The dissertation is based on two main research components: 1. Attack-resilient State Esti-

mation, 2. Testbed-based experimentation and performance evaluation of cyber attack-defense

on WAMPAC applications. The following section details the various research components and

the associated contributions.

• Attack-Resilient State Estimation In this component, a topology-based attack vec-

tor that bypasses bad data detection methods and causes loss of system observability is

identified. Two complementary mitigation measures are proposed to mitigate stealthy

cyber attacks and improve resiliency of state estimators. First, an offline attack-resilient

measurement design methodology is presented that increases robustness of state esti-

mators against false data injection and DoS attacks. Second, an online attack-resilient

anomaly detection method is presented that utilizes load forecasts, generation schedules,

and synchrophasor data to coarsely validate state estimates and detect false data injection

attacks.

The specific and expected contributions from this research component are given below:

1. Topology-based stealthy attacks and impact evaluation

– Identification of attack vector to create topology-based attack.

– Development of a methodology to analyze attack impacts in terms of SOLs.

– Case study on IEEE 14 bus system

2. Offline mitigation strategy for stealthy cyber attacks

– Development of attack-resilient measurement design methodology including SE

redundancy, accuracy, bad data detection.

– Minimum cost optimization formulation for placement of new measurements.

– Case study on IEEE 14 bus system
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3. Online mitigation strategy for stealthy cyber attacks

– Development of attack-resilient anomaly detection methodology leveraging load

forecasts, and synchrophasor data.

– Sensitivity analysis of proposed method considering variation in load forecasts,

measurement configurations, SE measurement accuracies and PMU data for

different attack magnitudes.

– Analysis of false positives, and false negatives for a range of attack detection

thresholds and attack magnitudes.

– Development of an empirical methodology to determine minimum attack detec-

tion magnitudes and detection thresholds for target false positive rate (FPR)

and true positive rate (TPR) specification.

– Case study on IEEE 14 bus system

• CPS Testbed - objectives, design methodology, architecture and performance

evaluation of coordinated attacks on WAMPAC applications

In this component, we describe several aspects pertaining to CPS testbed design, develop-

ment and experimentation. We also showcase results from testbed-based experimentation

and performance evaluation of cyber attack-defense on critical WAMPAC applications.

Overall, this component is expected to have the following contributions:

1. CPS security testbed - objectives, design methodology, architecture, and

challenges

– An overview of the basic testbed design objectives and design tradeoffs for var-

ious types of testbeds.

– A top-down methodology for the engineering of the CPS security testbed based

on specific WAMPAC use cases.

– Three layered testbed architecture abstraction and its application to create an

architecture for WAMPAC specific cyber attack-defense experimentation that

addresses research challenges identified.
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– Qualitative analysis of testbed federation looking at research challenges, feder-

ation architectures, and WAMPAC specific use cases that could benefit from

federation.

2. Attack-defense experimentation and performance evaluation on WAP and

WAC applications

– Identification of novel coordinated attack vector for RAS that involved a com-

bination of spatial and temporal coordination and its quantitative impact as-

sessment experimentally using the testbed.

– Experimental case studies that show how CPS security testbeds enable realistic

attack-defense experimentation on critical WAMPAC applications such as AGC,

RAS that could not be performed on ordinary simulation-based environments.
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CHAPTER 3. ATTACK-RESILIENT MEASUREMENT DESIGN FOR

STATE ESTIMATION

This chapter describes about the cyber-physical security of state estimators against stealthy

cyber attacks. The remainder of this section is organized as follows. Section 3.1 provides a gen-

eral context to cyber attacks on SE by describing the attack models, attack scope and the need

for application level security beyond traditional infrastructure security. Section 3.2 introduces

a topology -based stealthy attack and describes a methodology to study its impacts on the

power grid. Section 3.3 describes an offline attack-resilient measurement design methodology

that increases robustness of state estimators against false data injection and DoS attacks.

3.1 Cyber Attacks on Power System State Estimation

This section provides a brief overview of the two main attack vectors that have been men-

tioned previously in the context of state estimators. Also, it explains the scope of the attacks

in the context of the current security mechanisms in SCADA networks.

3.1.1 Cyber Attack Models

We consider the following types of cyber attacks on state estimators:

• Data integrity-based attacks - Attacks that target the integrity of analog or status mea-

surements from the remote terminal units to the control center.

• DoS attacks - Attacks that target the availability of analog or status measurements from

the remote terminal units to the control center.

The impact of DoS attacks on state estimators have not been studied in detail so far. How-

ever, the potential impacts of such an attack are likely to reduce the available redundancy in
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SCADA telemetry to very dangerous levels that could cause a significant deterioration in the

quality of the produced state estimates and/or lack of total system observability translating

into inadequate operator situational awareness. These type of attacks can cause other sec-

ondary and tertiary impacts as they affect the performance of the SCADA networks used in

system operations and also need to be systematically studied. In contrast, the two main types

of integrity attacks, the ones where analog measurements are impacted (false data injection

attacks) and the ones where status measurements are impacted (topology-based attacks) are

more stealthy and therefore considered more harmful.

3.1.1.1 False Data Injection Attacks

The basic attack vector for a stealthy false data injection attack as mentioned in [23] is to

find an attack vector a that satisfies the following equation:

z + a = Hx+ e, where a = Hc is the attack injection. (3.1)

This ensures that the attack is undetected in the largest normalized residual test which the

most commonly used BDD method in state estimators.

3.1.1.2 Topology-based attacks

The basic attack vector for a topology-based attack as mentioned in [37] is to find the

critical measurements in a particular system measurement configuration and create a topology

change that reduces the observability of the system.

If H is the system measurement matrix, then the critical branches in the system can be

obtained through the procedure shown in Section 3.2.5.2. A topology change in any one of

these measurements causes no change in the measurement residuals and therefore cannot be

detected by the BDD in state estimators.

3.1.2 Cyber Attack Scope

The SCADA network is used to obtain telemetry from the RTUs that are located at the

substations once every 2-10 seconds. The RTUs collect measurements from the Intelligent
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Electronic Devices (IED), Merging Units, various types of measurement devices through a local

communication protocol or through hard wired configurations. The communication from the

RTU to the control center goes over the wide-area network and is typically one of the following

protocols namely Distributed Network Protocol (DNP) 3, Modbus, Profibus, etc. The entire

SCADA infrastructure is made up of a variety of these legacy devices and communication

protocols. Therefore, the scope for cyber attacks on these devices are numerous despite several

infrastructure protection mechanisms such as firewalls, VPNs and security standards such as

NERC CIP [58]. Most of the devices like RTUs are still embedded devices which do not

possess enough computation power to perform encryption and authentication mechanisms.

Hence the chances of snooping clear text communications and manipulating control commands

or measurements in the communication protocols is a real concern. Therefore, it becomes

very necessary to provide tools and methods that analyze the possibility of cyber attacks and

enhance application level security with the help of diverse information sources. Designing a

secure system should ideally involve a defense-in-depth approach combining infrastructure and

application level security mechanisms effectively.

3.1.3 Need for Application Security beyond Infrastructure Security

We briefly look at the need to secure cyber infrastructure involved, and about the relevant

standards in place. Equally important to infrastructure security is application security, as state

estimation depends heavily on both the SCADA infrastructure and its data. Here, we look at

the need to have application specific security analysis beyond traditional IT and infrastructure

security.

Lack of adequate security measures at the electronic perimeters for critical infrastructures

could lead to attacks in the form of unauthorized access to confidential and critical data,

control of cyber infrastructure elements, injection of malicious software, exploitation of security

vulnerabilities in poorly patched software, etc. NERC Standards CIP-002-4 through CIP-009-4

provide a cyber security framework for the identification and protection of critical cyber assets

to support reliable operation of the bulk electric system. They not only identify the critical

cyber assets in the bulk electric system, but also the vulnerabilities to which they are exposed
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to, which could be exploited to create cyber attacks. The following list provides a brief overview

of some relevant CIP standards which help reinforce the cyber security of the power grid.

• CIP-002-4 - Requires the identification and documentation of the critical cyber assets

which support the reliable operation of the bulk electric power system.

• CIP-003-4 - Talks about minimum security management controls to be put in place so as

to protect critical cyber assets from unauthorized access, data and information breaches.

• CIP-005-4 - Requires the identification and protection of the Electronic Security Perime-

ters (ESPs) inside which all critical cyber assets reside, as well as all access points on the

perimeter.

• CIP-007-4 - Mandates the creation of methods, processes, and procedures for securing

critical cyber assets within the ESP, which includes an annual cyber vulnerability assess-

ment by responsible entities.

Even though the NERC CIP standards have identified and recommended several best prac-

tices for cyber security, the possibility of cyber attacks happening is still high due to several

factors. A poor implementation of the standards or security measures, or partial CIP com-

pliance could still present several vulnerabilities which could be exploited to create attacks.

Also, the partial or incremental deployment of security measures is another issue which could

potentially lead to security holes. It could also be difficult to incorporate modern security

mechanisms like encryption, authentication and intrusion detection algorithms, given the mod-

erate capabilities available to several legacy SCADA field devices. Even in the case of complete

deployment of security measures as identified by CIP standards, there are possibilities of cyber

attacks through insider threats, where the attacker has a very thorough understanding of the

systems and the security processes involved [59]. Another interesting possibility is that data

integrity attacks could still be possible under a secure infrastructure in the form of a replay

attack, where the same set of command packets could be replayed at a later point in time,

bypassing the security mechanisms by virtue of eavesdropping. Therefore, it is essential for us
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to develop adequate security measures at the application level also, in addition to securing the

infrastructure elements, creating a layered defense mechanism against cyber attacks.

3.2 Topology-Based Cyber Attacks

This section explains how the topology of the system can be altered through cyber attacks

without being detected by Bad Data Detection (BDD) in SE. The remainder of this section is

organized as follows. Section 3.2.1 explains how topology processing, topology error processing,

BDD fit in within the overall SE process as described in Figure 3.1. Also, it presents the

cyber attack model in detail. Section 3.2.5 explains the method used in creating unobservable

topology errors due to cyber attacks and studying their impact in terms of SOL violations.

Section 3.2.6 shows how the methodology can be applied to an example power system model

to find attack locations and also analyzes attack impacts.

3.2.1 Topology Processing

The Energy Management Systems (EMS) at the control center contain a network model

which contains the power system topology information in terms of physical breakers and

switches, commonly referred as a breaker-switch model. However, all the traditional power

system analysis functions are performed on a bus-branch network model. The bus-branch net-

work model is derived from the breaker-switch model by consolidating the status of breakers

and switches obtained from telemetry and obtaining a reduced equivalent network topology[60].

This translation which involves the process of building a network topology is performed by the

topology builder or the topology processor.

The topology processor is one of the key components of a state estimator. A wrong network

topology can not only result in a significant error in the estimates of the system states, but

also sometimes could result in the state estimator solution not converging [61]. This can result

in several problems if left unattended for a long time. Operating the power system without a

converged SE solution is like flying blind, in other words, the operators will have no situational

awareness of the power system operating conditions. There are several procedures in place in

the Independent System Operators (ISO)s to specifically handle the occurrence of SE solutions
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not converging over a set of consecutive execution runs, as the ISO’s are required to maintain

a high, valid SE solution availability.

Figure 3.1 Overview of SE in power system operations

3.2.2 Topology Error Processing

Since the process of network topology construction depends on telemetered status measure-

ments from the field devices, it is bound to contain several sources of errors. There are several

factors which can contribute to a wrong network topology:

1. Unavailability of status points due to network failure.

2. Faulty field devices.

3. Manual status update of certain devices during maintenance.

4. Outdated status in case of non-telemetered devices.

5. Malicious data manipulation of device status through cyber attacks.
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Therefore, every state estimator has a component which validates the network topology

identified by the topology processor, and this is known as the topology error processor. There

are two broad methods by which this topology error processing can be performed [61],[62].

The first set of methods are a priori methods, and are based on simple consistency checks

correlating the analog measurements to validate the network topology. Other methods are

based on posteriori processing, which rely on a converged SE solution to validate the network

topology. It is to be noted here that a prioiri methods are based on fast and approximate

techniques, and are applied usually at the substation level. Therefore, they may fail to identify

several topology errors. Posteriori methods rely on results of a converged SE, which may not

exist in the presence of some topology errors.

3.2.3 Bad Data Detection

One of the main functions of SE is to validate the measurements obtained from SCADA,

as they are known to contain measurements with various types of errors. Therefore, detecting

and identifying bad data in SE is very important, which is done by comparing the telemetered

measurements with the estimated values of the states. It is worth mentioning that bad data

detection and identification is dependent on the configuration of the entire measurement set

of a system. Bad data in the measurements could be categorized as single or multiple, and

interacting or non-interacting. Bad data can be detected using the Chi− squares test or using

normalized residuals. Identification of bad data, i.e, to find out which measurements actually

contain bad data, can be done using largest normalized residual test and hypothesis testing

identification method. One caveat is that bad data can be detected, only if removal of the

measurement does not render the system unobservable. This means that bad data in critical

measurements cannot be detected.

3.2.4 Cyber Attack Scope and Attack Model

The SCADA analog and status measurements are polled once every 2 to 4 seconds (typically)

from RTU in every substation. The RTU collects this information at a much faster rate from

IEDs like relays and circuit breakers. These measurements from the RTU travel through a
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wide-area communication network to the control center. The communication network could be

encrypted and/or authenticated using the protocol specific encryption or end-to-end solutions

like Virtual Private Network (VPN) and firewalls.

Timing attacks based on delaying of the data are relevant when there is some sort of control

mechanism involved, which requires a strict timing constraint. With respect to SE, since the

data is expected to be unavailable occasionally, they do not pose any real threats. Replay

attacks are similar in nature to data integrity attacks, where the attacker manipulates the

status and analog measurements of the data that the RTU is sending by hijacking the packets

in transit from the RTU to the control center. False data injection attacks, which several

researchers have discussed with respect to state estimation, and the topology related attacks,

which this work identifies, fall under this category. DoS attacks are those where the attacker

can flood the communication network with arbitrary traffic to deny service to either the RTU

or the control center. This can be achieved by either grabbing the packets sent by the RTU,

or by bombarding the RTU, which acts as a server (data source) with too many data requests,

causing it to crash.

In this work, the attacker’s objective is to create a topology error in the network model

which the SE software uses, by intelligently finding appropriate locations inside the model,

and attacking the relevant field devices in the SCADA network. The attack model can be

characterized by the following set of assumptions:

1. The attacker has access to the SCADA measurement set configuration.

2. The measurement configuration does not have very high redundancy always.

3. Data integrity attacks are possible in cases where internal SCADA network traffic uses a

clear text format and the network is protected using some sort of VPN or firewalls.

4. Replay attacks are possible even under encrypted data communications in the SCADA

network.

The above stated assumptions are considered to be realistic, considering the current SCADA

network environment, which is characterized by legacy devices, protocols and network security
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measures. Also, the complexity of cyber attacks executed in the recent past on SCADA net-

works like Stuxnet [8], strengthen the validity of our assumptions.

3.2.5 Method to Create an Unobservable Cyber Attack through Topology Errors

It is obvious that a topology error can be created by manipulating any single field device

through an arbitrary cyber attack. However, this type of naive attack can be easily detected as

SE contains a bad data detection component, which identifies the topology error appropriately.

An intelligent adversary would go well beyond the naive attack described above to remain

undetected. There are certain elements in the SCADA measurement configuration which when

manipulated can slip unnoticed by traditional bad data detection methods.

This section will describe the steps which are involved in creating such an attack by identi-

fying what measurements are to be manipulated and thereby identify the attack target also (i.e.

the corresponding breaker or field device). Also, this section will explain the steps to quantify

attack impact in terms of SOL violations, which are monitored by operators constantly in ev-

eryday operations. There are NERC standards which stipulate that the power system is always

operated under SOL for all the line flows, voltage limits, etc., and any SOL violation needs to

be addressed to within a period of 30 minutes through a generation re-dispatch [63],[64],[65].

The adversary’s aim is to create this unnecessary re-dispatch by causing some SOL violations,

leading to potentially unhealthy system conditions, while also causing economic impacts.

The following subsections will explain in detail the method of creating an unobservable

cyber attack by manipulating the network topology selectively at carefully defined locations.

Figure 3.2 presents an overview of the method described below.

3.2.5.1 Identifying Critical Measurements

There are certain measurements in a SCADA measurement configuration called ‘critical

measurements,’ which when removed makes some portion of the system unobservable. The

approach to identify the critical measurements in a measurement configuration described below

has been adopted from [61]. In this analysis, we use the linear Weighted Least Squares (WLS)

formulation for our SE model. The problem of interest to us lies in the observability analysis
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of the system and this is independent of the branch parameters or the operating state of the

system. Hence, for simplicity we assume all bus voltages to be 1.0 p.u. Our problem now is to

estimate the phase angles at all the buses in the system except the slack bus. Let n, m be the

total number of states and measurements in the sytem(m ≥ n).The measurement vector z is

related to the state vector x according to the following equation:

z = Hx+ e (3.2)

where,

z is a m× 1 vector which contains m injection and flow measurements in total, x is a n× 1

vector of the system states, e is a m× 1 vector of the measurement errors.

H is a m× n matrix which is the Jacobian matrix of the measurement matrix h(x).

By definition, “critical measurements” are those whose removal leads to an unobservable

network [61]. There are different methods by which one can obtain the critical measurements

in the measurement configuration. One of them is given below:

Choose a set of n measurements out of the available m measurements to be the “essential

measurements”. It is to be noted here that this set is not unique in general, but will contain

all of the critical measurements, as without those the system would be unobservable. Ordering

the essential measurements first, we can write the measurement equations as

H1

H2

 · [x] =

z1
z2

 (3.3)

where H1, H2 correspond to the essential and non-essential measurements z1, z2 respectively.

Applying the Peters-Wilkinson decomposition[66] method,H1

H2

 =

L1

M2

 . [U] (3.4)

where L1 is a n× n lower triangular matrix,

M2 is a (m− n)× n rectangular matrix,

U is a n× n upper triangular matrix,
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Based on matrix algebra we can write,

z1 = L1.U.x (3.5)

z2 = M2.U.x (3.6)

z2 = M2.L
−1
1 .z1 (3.7)

z2 = T.z1 (3.8)

Here we can see that the non-essential measurements z2 are dependent linearly on essential

measurements z1. Therefore, an element of z1 is critical if the corresponding column of T

is null. If the critical measurement identified by the null column of T is removed from the

measurement set, the system cannot be said to be fully observable any more.

3.2.5.2 Identifying Critical Branches

The method in the previous subsection identifies the critical measurements in a given mea-

surement set. Similar to these, we can identify the critical branches in a measurement configu-

ration. Critical branches are those branches of a measured, observable network, whose removal

renders the system unobservable. The critical branches in a measurement set can be found

using the following method[61].

The effect of topology errors in the Jacobian matrix H can be modeled as

H = He + E (3.9)

where,

He represents the erroneous Jacobian matrix

E represents the Jacobian matrix error

The measurement residuals denoted by r, can be written as

r = z −Hx̂ = Tcb.∆f (3.10)

where, ∆f is a vector of branch flow errors. From [61], matrix Tcb can be shown to be equal to

Tcb = (I −K)M∆f (3.11)
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K = He(H
T
e .R

−1.He)
−1HT

e R
−1 (3.12)

where,

I is the identity matrix

R is the diagonal co-variance matrix

M is the measurement topology matrix

A null column in Tcb would make a zero entry in the residual matrix no matter what the

branch flow error is, thereby evading bad data detection.

Based on the proofs in [67], we can say that a branch is not single topology error detectable,

if it is a critical branch, or incident only to critical measurements. Hence, after we obtain the

critical measurements or critical branches, we can identify the locations of the field devices

which are prone to topology manipulations through cyber attacks.

3.2.5.3 Analysis of Impacts: Computation of SOL for Transmission Lines

Once a particular attack to create an unobservable topology error can be identified, the

next step is to study the impact it causes on the power system operations. As defined earlier,

the output of SE is used in CA, Market analysis tools like SCOPF, etc. We choose to show the

impact in terms of violations of SOL, which are the most constraining operating limits on line

flows, system voltages etc., for the system under a set of credible contingencies. Computation

of SOL for a particular line requires information about the line flow ratings denoted by fmax
l ,

the linear Generation Shift Factors (GSF) denoted by ali and the Line Outage Distribution

Factors (LODF) denoted by dl,k.

ali =
∆fl
∆Pi

(3.13)

where, the GSF identifies the change in flow on a given line l for a change in power injection

at bus i.

d(l,k) =
∆fl
f0k

(3.14)

where, the LODF identifies the change in flow on a line l for an outage on line k, for a pre-

outage flow of f0k on line k. The SOL for a given line for a particular contingency is given
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by

fsoll = f0l +
(ali − alj)(fmax

l − f0l − dl,k.f0k )

ali − alj + dl,k(aki − akj)
(3.15)

where, fSOL
l provides the SOL under one particular contingency and a defined stress direction

for power transfer. However, in practice the Equation 3.15 should be computed for every

contingency on a screened contingency list and the lowest value among those gives the SOL for

every line flow [68].

Figure 3.2 Method for creating an unobservable attack and studying its impacts

3.2.6 Case Study

The method described in Section 3.2.5 has been applied to the IEEE 14-bus power system

model to identify the critical measurements and branches and also to show the impacts of the

topology-based cyber attack. Figure 3.3 shows the IEEE 14-bus system model. The impedances

of the transmission lines and its ratings are shown in Table 3.1. The line flow measurements and

power injection measurements are shown in Figure 3.3 with rectangular boxes and arrow heads
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Figure 3.3 IEEE 14-bus power system with measurement configuration

respectively. The measurement configuration has 17 measurements in total for estimating 13

states (phase angles) in the system.
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3.2.6.1 Finding the Critical Measurements/Branches

The measurement matrix z is given as

z =



P1−2

P3

P5−4

P4−7

P6

P9

P7−8

P9−10

P1−5

P10

P12

P13−6

P9−14

P6−11

P4−9

P6−12

P13−14



(3.16)

where,

Pi is the power injection measurement at any bus i.

Pj−k is the power flow measurement on line between bus j and bus k.

The measurement Jacobian matrix H is of the order 17 × 13. Based on the procedure

mentioned in Section 3.2.5.1 for obtaining the critical measurements, the T matrix (4×13) has

been computed. The null columns found in T are columns 1, 2 and 7, which correspond to the

critical measurements being P1−2, P3, P7−8.
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Table 3.1 IEEE 14-bus system parameters

Line number Reactance(p.u) Line rating(p.u)

1− 2 0.05917 2

1− 5 0.22304 2

2− 3 0.19797 2

2− 4 0.17632 2

2− 5 0.17388 2

3− 4 0.17103 2

4− 5 0.04211 1.5

4− 7 0.20912 1.5

4− 9 0.55618 2

5− 6 0.25202 1.5

6− 11 0.19890 2

6− 12 0.25581 2

6− 13 0.13027 1.5

7− 8 0.17615 2

7− 9 0.11001 2

9− 10 0.08450 2

9− 14 0.27038 2

10− 11 0.19207 1.5

12− 13 0.19988 2

13− 14 0.34802 1.5
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Similarly, using the procedure mentioned in Section 3.2.5.2 for obtaining the critical branches,

the Tcb matrix (17 × 20) has been computed and columns 1, 2, 3, 4, 5, 6 and 14 contain all

zeros. These correspond to the following branches in the 14-bus system, namely 1-2, 1-5, 2-3,

2-4, 2-5, 3-4, 7-8. Out of these, branches between buses 1-5, 2-3, 2-4, 2-5 and 3-4 do not contain

any measurements and are therefore irrelevant measurements. The branches 1-2, 7-8 are the

critical branches.

3.2.6.2 Cyber Attack Impact Analysis

The base case power flow conditions are given in Table 3.2.

Table 3.2 Base case power flow conditions

Bus number Generation(p.u) Load(p.u)

1 2.81 0

2 1.0 0.217

3 0 0.942

4 0 0.7

5 0 0.2

6 0 0.112

7 0 0

8 0 0

9 0 0.25

10 0 0.29

11 0 0.2

12 0 0.25

13 0 0.35

14 0 0.3

The GSF’s for this network model are of the order 20 × 14 and are therefore omitted for

the sake of space. Every column in the GSF matrix represents the a bus at which the injection

change takes place and every row represents the particular transmission line on which the

change in flow is to be computed.

The LODF’s are of the order 20 × 20 and are also omitted for the same reason as above.

Every column in the LODF matrix represents the contingency where a particular transmission
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line is outaged, and every row represents the line at which the change in post-contingency flow

is to be measured.

Table 3.3 SOL and pre-contingency line flows before the attack

Line SOL before attack(p.u) Line flows before attack(p.u)

1− 2 1.8834 1.7574

1− 5 1.3907 1.0536

2− 3 1.4650 0.8732

2− 4 1.2172 0.9137

2− 5 1.1731 0.7535

3− 4 −2.0 −0.0688

4− 5 −1.5 −0.7145

4− 7 0.7517 0.5427

4− 9 0.6594 0.3167

5− 6 0.9782 0.8926

6− 11 0.4921 0.1492

6− 12 0.5708 0.2256

6− 13 0.61 0.4057

7− 8 2 0

7− 9 0.8498 0.5427

9− 10 0.6865 0.3408

9− 14 0.6217 0.2686

10− 11 0.3553 0.0508

12− 13 −2.0 −0.0244

13− 14 0.3061 0.0314

Of the critical branches identified earlier, branch 7-8 is a branch where a transformer is

connected to a synchronous condenser. Since we are using a DC power flow model, it will not

carry any power on it and therefore would yield a trivial result. Let us remove the critical

branch 1-2 to model an unobservable topology error caused by a cyber attack. On removal

of this branch, the H matrix will now become a 16 × 13 matrix. In the new H matrix, even

though there are 16 measurements available to estimate the 13 system states, the system is not

totally observable. This can be identified by the rank of the new H matrix, which reduces to

12 due to the removal of the critical branch.

Since the attack has changed the network topology, we need to re-evaluate the GSF’s and

LODF’s again. The new GSF matrix is of the order 19 × 14 and the new LODF matrix is of
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Table 3.4 SOL and pre-contingency line flows after the attack

Line SOL after attack(p.u) Line flows

after attack(p.u)

1− 2 NA NA

1− 5 2.0 2.8110

2− 3 1.1846 0.5765

2− 4 0.8843 0.2927

2− 5 −2.0 −0.0862

3− 4 −2.0 −0.3655

4− 5 −1.5 −1.5815

4− 7 0.3706 0.5107

4− 9 0.6126 0.2980

5− 6 0.6571 0.9433

6− 11 0.4395 0.1798

6− 12 0.5209 0.2301

6− 13 0.5790 0.4214

7− 8 2.0 0

7− 9 0.8097 0.5107

9− 10 0.6407 0.3102

9− 14 0.5736 0.2485

10− 11 0.3154 0.0202

12− 13 −2.0 −0.0199

13− 14 0.2645 0.0515
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the order 19× 19. The SOL and the pre-contingency line flows in the transmission lines before

and after the attack are given in Table 3.3 and Table 3.4 respectively.

3.2.7 Discussion

By definition, SOL specifies the maximum pre-contingency line flows on a given transmission

line for a particular network topology. We can see that the pre-contingency line flows before

the attack are less than the SOL’s from Table 3.3. The perceived line flows according to the

new network topology after the attack are much closer to their limits in several of the lines,

as though a contingency(outage of line 1-2) has already occurred. We can see from the bold

entries of Table 3.4 that the corresponding lines 1-5, 4-5, 4-7 and 5-6 have SOL violations after

the cyber attack.

This has provided an illusion that these lines have SOL that is lower than the current line

flows. This change in SOL is not accompanied by any alarms from SE as the cyber attack has

been created to introduce a topology error unobservable in bad data detection. The operator

would thereby re-dispatch the generation so as to alter the line flows to be within the limits as

per the NERC operational guidelines. This re-dispatch may result in a dangerous scenario if

there are any real contingencies which occur during that time, which would not have otherwise

occurred if the attack was detected. This re-dispatch also has an impact in the markets as it

causes the LMPs to change unnecessarily causing potential losses to customers.

3.2.8 Conclusions

This work addresses the problem of how topology errors, in particular, the branch status

errors, can be created by malicious adversaries through intelligent cyber attacks. We have

shown how an unobservable topology error can be created by manipulating the field devices

corresponding to the critical measurements or critical branches in the SCADA measurement

set configuration. Also, we have shown how the impacts of such an attack can be analyzed

through SOL violations on the altered network topology.
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3.3 Offline Mitigation: Attack-resilient Measurement Design

Section 2.3.3 explained the attributes of good measurement design and reviewed relevant

literature in this area. In this section, we describe in detail an attack-resilient measurement

design methodology that extends traditional measurement design with consideration for the

loss of multiple measurements including loss of entire substation data, and also the ability to

detect bad data in the presence of malicious data manipulations due to a cyber attack by en-

suring adequate redundancy, and bad data detection capabilities of the resultant measurement

configuration [69].

3.3.1 Attack-Resilient Measurement Design Methodology

Figure 3.4 presents the proposed methodology for attack-resilient measurement design. We

consider the existing measurement set configuration as a baseline. For the existing measurement

set, we generate the list of possible scenarios to be included for our analysis of the measure-

ment design. We include the loss of any two measurements and branch outages involving two

components also in our preliminary analysis to eliminate the presence of critical measurements

in the measurement set. When the measurement set has no critical measurements, we then

consider the list of scenarios that involve loss of one and two RTUs. In order to simulate the

case of RTU failure, we remove all the measurements that are associated with a particular bus.

In general, the method checks the observability of the measurement set for each scenario,

and if the contingency (either loss of measurement or branch outage) does not involve any

loss of observabiility we ignore that case and skip to the next scenario. In cases where there

is a loss of observability, we identify possible pseudo-measurements that need to be added

to the measurement set to restore observability. Mostly, the pseudo-measurements used are

injection measurements that are obtained from forecasts at the respective buses. We obtain

pseudo-measurements by adding the appropriate errors to the actual measurements based on

the statistical model of the pseudo-measurements. After we insert the pseudo-measurements to

the measurement set, we consider a load scenario, and perform state estimation using a power

flow model. Based on the power flow and a measurement model we perform state estimation
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along with the pseudo-measurements and identify the deviation of the line flows with and

without pseudo-measurements. We choose line flow violations as one of the metrics because

incorrect line flows could mislead the operators into believing that there are SOL violations

for line flows. According to NERC operational standards, all SOL violations for all the line

flows need to be addressed using generation redispatch within 30 minutes [63],[64],[65]. As the

accuracy of pseudo-measurements could vary depending on the forecast accuracy, we assumed

accuracy parameters to generate the pseudo-measurements for the purpose of this analysis.

We can also check for accuracy metrics specific to state estimators as defined in [70]. If

the chosen metrics are under threshold, we move to the next scenario as this scenario pro-

vides acceptable performance with available pseudo-measurements. If the inclusion of pseudo-

measurements does not provide acceptable performance, we add the scenario to the list of

scenarios for addition of new measurements in a measurement design or PMU placement prob-

lem. After we identify all possible such scenarios that need new candidate measurements to

provide acceptable performance, we can obtain optimal placement of measurements using one

of the methods mentioned in [43, 45, 44, 46, 42].

We choose to adopt a similar optimization formulation as mentioned in [42]. The measure-

ment placement is formulated as a binary integer linear optimization problem. The decision

variables are whether a given candidate measurement is chosen to be part of the new measure-

ment placement or not. The objective of the problem is to minimize the cost of new measure-

ments subject to the constraints that the resulting measurement set is always observable under

the different scenarios. Mathematically, the problem can be stated as:
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minCT ·X

subject to A ·X ≥ b

Aij =


1

if measurement j is selected

as a candidate for scenario i

0 otherwise

X(i) =


1 if measurement i is selected

0 otherwise

bT = [2 2 .. 1 ... 2..]

where, C is the cost vector for new candidate measurements. X is the candidate measurement

selection vector, which determines whether candidate measurement i is chosen or not. A matrix

represents the suitability of a particular candidate measurement j for a scenario i considered.

The overall dimension of the A matrix depends on the number of scenarios considered and

the number of candidate measurements used. b is a vector of 1 or 2’s depending on whether

scenario i results in rank reduction of one or two in the measurement Jacobian matrix. The

optimization problem requires a set of candidate measurements as inputs, but is independent

of the method used to choose them for a particular scenario.

The attack-resilient measurement design approach greatly improves the redundancy, reli-

ability, bad data detection capabilities of the measurement configuration for state estimation

and it not only addresses the cyber attacks that target availability of multiple measurements

or RTUs, but also eliminates a large possibility of low-sparsity stealthy cyber attacks as dis-

cussed in [23, 35]. In other words, we can say that due to the increased measurements in the

measurement configuration, the minimum amount of effort that is needed to influence a single

state variable without being detected in bad data detection is increased. We also believe that

complementing this approach with some of the existing PMU placement methods that provide
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complete observability, we can even further improve the resiliency and robustness of the state

estimators against various forms of cyber attacks.

Figure 3.4 Flowchart of attack-resilient measurement design

3.3.2 Case Study on IEEE 14-Bus System

In this section, we present a case study for the proposed attack-resilient measurement design

approach using the IEEE 14-bus system. Figure 3.3 shows the IEEE 14 -bus system with the

baseline measurement configuration. We consider only the estimation of phase angles in this

case study for simplicity. This configuration has 17 measurements to estimate 13 states (phase

angles). The measurements that are included in the baseline measurement set are shown in

Table 3.6. Pi is the power injection measurement at any bus i, and Pj−k is the power flow

measurement on the line between bus j and bus k.

In this measurement configuration we have four critical measurements P1−2, P1−5, P3, P7−8.

In our preliminary analysis, we found that for the list of scenarios that involve loss of two

measurements, there were 60 occurrences where complete observability was lost. Out of 60
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scenarios, most of the scenarios involved the loss of one of the four critical measurements and

another redundant measurement. There were also 2 critical pairs of measurements identified.

There were 6 scenarios where two critical measurements were lost. The critical measurement

pairs are P5−4, P6 and P4−7, P9.

We augmented this baseline measurement set with additional measurements to eliminate

all critical measurements, before further analyzing them for loss of multiple measurements

failing at substation level (i.e) RTU failures. The additional measurements that were added

are P1, P3−4, P7, P2−3. We then considered the loss of all possible scenarios where any two

RTUs would fail simultaneously to perform our analysis. In order to model the measurement

loss at RTU level, we remove all the measurements corresponding to a particular bus from the

measurement set and then test for observability. If the resulting measurement matrix is not of

full rank, we use pseudo measurements to restore observability and then perform state estima-

tion using a load scenario and a DC power flow model. We add random normal distribution

errors to the DC power flow solutions to generate actual state estimation measurements. We

consider the relative confidence of regular measurements to be 0.01 and accuracy of pseudo

measurements to be 0.1 in our case study.

Table 3.5 Base case load scenario

Bus number Generation (p.u) Load (p.u)

1 2.81 0

2 1.0 0.217

3 0 0.942

4 0 0.7

5 0 0.2

6 0 0.112

7 0 0

8 0 0

9 0 0.25

10 0 0.29

11 0 0.2

12 0 0.25

13 0 0.35

14 0 0.3
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The load scenario that we used in our case study is shown in Table 3.5. We considered

our accuracy metric to be a difference of 0.1 p.u in the estimated line flows after the use of

pseudo-measurements. If the use of pseudo-measurements violated the metric, we identify those

scenarios as those where we need new measurements instead of using pseudo-measurements.

In the IEEE 14-bus system, for our measurement configuration, there were 91 possible

scenarios with loss of two RTUs. Out of that, 23 of the scenarios violated the flow deviation

metric for the load scenario and one specific realization of pseudo-measurements considered.

We note here that the number of scenarios that exactly violate the metric depends on these

two factors and a more accurate analysis can be performed by repeating simulation runs and

choosing parameters based on actual worst case values.

Once we obtain the scenarios that need measurements added to ensure acceptable state

estimator performance, we select candidate measurements and feed them as inputs to the binary

integer optimization problem as explained previously. In this case study, we use branch flow

measurements only as the candidate measurements, although this method also works equally

well with injection measurements included. The cost vector C is assumed to be all 1’s in our

case although this also could be varied if more data was available about specific substation

level meter deployment costs. Depending on the selection of candidate measurements, we

can populate the A matrix for all scenarios. The b matrix is also populated with 1’s or 2’s

depending on the particular scenarios considered, and the corresponding rank reduction in

the measurement Jacobian matrix. Table 3.7 presents the candidate measurements selected

in integer optimization problem for the IEEE 14-bus system for addition into the existing

measurement set to tolerate loss of upto any 2 RTUs simultaneously.

Table 3.6 IEEE 14-bus system baseline measurements

Baseline measurement set

P1−2, P3, P5−4, P4−7, P6, P9, P7−8, P9−10, P1−5,

P10, P12, P13−6, P9−14, P6−11, P4−9, P6−12, P13−14



www.manaraa.com

47

Table 3.7 Results of measurement placement

Selected new flow measurements

P2−1, P3−2, P4−3, P5−1, P6−12, P7−8, P8−7,

P9−10, P10−9, P11−6, P12−6, P14−9

3.3.3 Practical Challenges

One of the main challenges in designing a measurement set with all possible scenarios for the

loss of any two RTUs is the size of the problem. If we were to consider all possible cases in the

analysis, the number of scenarios would quickly become intractable, even for moderately sized

systems due to its combinatorial nature. However, we can eliminate a lot of scenarios from the

analysis with the help of knowledge about practical implementations of existing measurement

configuration. We can rule out cases where possibilities of two RTUs that do not share common

network routes or eliminate certain RTUs that have adequate backup, etc. Existing cyber

security measures at substations would also help in further reducing the size of the problem.

3.3.4 Conclusions

In this work, essentially, scenarios of multiple measurement loss where pseudo-measurements

cause unacceptable deviations in state estimates or related accuracy metrics was identified.

Then, the list of scenarios was fed into an optimization problem to obtain a least cost measure-

ment set that ensures system observability and acceptable estimator performance. Also, the

obtained measurement set would provide increased resiliency against stealthy data injection

attacks by increasing the minimum effort needed by the adversary.
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CHAPTER 4. ATTACK-RESILIENT ANOMALY DETECTION

In this chapter, we describe an online attack-resilient anomaly detection method that uti-

lizes load forecasts, generation schedules, and synchrophasor data to coarsely validate state

estimates and detect anomalies [71]. While Section 3.3 presented an offline approach to make

the state estimation more resilient to cyber attacks, Section 4.1 introduces the proposed online

anomaly detection method to detect stealthy cyber attacks. Section 4.2 presents the case study

and performance analysis of the proposed method on IEEE 14-bus test system. Section 4.3

summarizes the chapter contributions and briefly discusses future work.

4.1 Proposed Online Anomaly Detection Methodology

The proposed online methodology for detecting stealthy false data injection attacks on state

estimators by leveraging information that is separate from SCADA measurements to detect

measurement anomalies. As mentioned earlier, the proposed methodology differs from existing

offline solution approaches that either rely on infrastructure security mechanisms, or adding new

measurements. The proposed anomaly detection algorithm would serve as a complementary

tool to SE by detecting malicious measurement manipulations due to stealthy attacks, which

could otherwise go undetected.

4.1.1 Proposed Detection Methodology

The proposed detection methodology, shown in Figure 4.1, makes use of the existing SCADA

measurements, and in addition, uses load forecasts, generation schedule information, and exist-

ing synchrophasor data to detect measurement anomalies in state estimators. Existing SCADA

measurements contain status measurements, which are used to perform topology processing,

and analog measurements, which are used along with the output of topology processing to
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Figure 4.1 Overview of proposed anomaly detection methodology

perform conventional SE. The proposed approach uses the output of the topology processor to

update its current network model and system parameters for the anomaly detection algorithm.

Real-time short-term load forecast information (at the individual bus level), and generation

schedule information, which are available as part of the real-time energy markets are also fed

as inputs to the algorithm. In addition, the proposed approach utilizes real-time data from

existing PMU deployments, which are obtained from a separate communication network. Typ-

ically, the SCADA measurement data gets updated once every 4-8 seconds and typical ISO

intervals between successive SE is between 1.5 to 5 minutes. Real-time short term load fore-

casts are updated once every 5 minutes and generation schedules are updated once every hour

in real-time energy markets.

Since the proposed algorithm depends on the update frequency of load forecasts, it would

be executed once every 5 minutes, where the appropriate forecast-based estimates and the

corresponding state estimator outputs would be compared. Because the detection methodology

relies on load forecasts there could be false positives, i.e. large deviations from forecast-based
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predictions, which could limit the minimum attack that can be detected. While this could be

captured to some extent through statistical characterization using historical data, the balance

between false alarm probability and detection probability could be adjusted favorably with

better forecasts and the availability of more secure PMU measurements. In addition, real-time

operational metrics from the AGC algorithm could be used to further narrow down the false

positives due to forecast/real-time operational abnormalities and improve the performance of

the anomaly detection algorithm.

The use of load forecasts for pseudo-measurements in state estimators has been known for

a long time [61, 62]. Typically, pseudo-measurements are included only when there is a loss of

system observability. It is also well known that the use of pseudo-measurements will adversely

affect the quality of state estimates produced if used incorrectly [38]. However, the integration

of pseudo-measurements directly into state estimator would not be a suitable solution to the

problem of detecting stealthy false data injection attacks, because we would not know what

measurements have been corrupted (the attack would cause no change in normalized measure-

ment residuals). Therefore, we would not be able to identify where pseudo-measurements need

to be inserted.

Recently, the integration of PMU measurements in SE has been a research topic of interest

to increase redundancy and bad data detection [72, 73]. However, solutions that integrate

additional measurements like PMUs into the SE measurement configuration are part of offline

solution approaches and are outside the scope of the paper. Also, as mentioned previously, the

offline solutions would be inadequate if attacker resources are increased.

In this work, our main emphasis is not to make any changes directly in SE by adding

forecast-based estimates or PMU data into the measurement set to improve bad data detec-

tion capabilities, rather it is to develop an anomaly detection algorithm that can detect gross

measurement anomalies due to stealthy cyber attacks by predicting states independently and

comparing them with state estimator outputs using information that is independent from the

untrusted SCADA measurements.
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4.1.2 Anomaly Detection Algorithm

Figure 4.2 shows a detailed flowchart of the analysis that is performed by the proposed

anomaly detection algorithm. The key steps that are performed as part of the proposed anomaly

detection algorithm are described in detail below.

Figure 4.2 Anomaly detection algorithm flowchart

Step 1: Update Power System Model

The output of the topology processor is used to obtain the latest network topology from

SCADA status measurements. Based on the current topology, the power system model and

its corresponding parameters are updated in the algorithm. Simultaneously, for each 5 minute

interval, real-time generation schedules and forecast information are obtained from the real-time

markets.
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Step 2: Perform Economic Dispatch

The data obtained is fed as an input to the economic dispatch algorithm. Eq. 4.1-4.4

describe the standard economic dispatch formulation to obtain the optimal generation set

points that could exist for the next interval. ci represents the generator cost curves of each of

the m generators, Pgeni represents the generator output which is to be obtained, Ploss(Pgen)

represents the transmission line losses as a function of generator outputs, Pload total represents

the total system load obtained from load forecasts. Pmin
geni

and Pmax
geni

represent each generator’s

limits.

min
m∑
i=1

ci(Pgeni) (4.1)

m∑
i=1

Pgeni − Ploss(Pgen)− Pload total = 0 (4.2)

Pmin
geni
≤ Pgeni ≤ Pmax

geni
, ∀i = 1, ...m (4.3)

Pgeni ≥ 0, ∀i = 1, ...m (4.4)

Step 3: Calculate Power Flow Based on Economic Dispatch

Based on the estimated generation set points from the economic dispatch, a power flow

algorithm is run to obtain the line flows and voltages at different buses in the system model.

Eq. 4.5-4.8 describe the power flow problem, where the unknowns are the N − 1 phase angles

and the N −NG voltages in the system (N , and NG represents the total number of buses and

generators respectively). There are a total of 2N−NG−1 unknowns. Typically, the power flow

problem is solved using an iterative method such as the Newton-Raphson method, where the

update formula for the (i+1)th iteration is given by Eq. 4.6. J represents the system’s Jacobian

matrix. Pk and Qk represent the real and reactive power injections at each bus except the slack

bus, which is obtained from a difference of the real, reactive power outputs Pgen, Qgen and the

real, reactive loads Pload, Qload respectively as shown in Eq. 4.7 and Eq. 4.8. Eq. 4.9 shows

f(x) expressed as the vector of real and reactive power mismatches between the iteratively

calculated power injections and the actual power injections at a bus.
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f(x) = 0, x =

 θ
V

 (4.5)

x(i+1) = x(i) − J−1f(x(i)) (4.6)

Pk = Pgenk
− Ploadk , ∀k = 2, ...., N (4.7)

Qk = Qgenk
−Qloadk , ∀k = NG+1, ...., N (4.8)

f(x) =



P2(x)− P2

.

PN (x)− PN

QNG+1(x)−QNG+1

.

Q2N−NG−1(x)−Q2N−NG−1



=



0

.

0

0

.

0



(4.9)

Equivalently, steps 2 and 3 could be combined into an Optimal Power Flow (OPF) formu-

lation, which combines power flow constraints with economic dispatch. In that formulation, in

addition to Pgeni , all the branch flows (PB), and phase angles (θ) would also be part of the

solution vector. Correspondingly, power flow equations and limits would have been added to

the existing constraints to ensure power flow feasibility.

Step 4: Update Predicted State Variables and Compute Deviations

The power flow solution gives the predicted state variables based on load forecasts, namely,

voltage magnitudes and phase angles. As mentioned before, the proposed approach will leverage

available PMU data at selected buses to directly obtain the values of state variables (voltages,

phase angles). These values would be used in place of the predicted state variables based on

load forecasts as their accuracies are better and would lead to tighter detection thresholds.

Therefore, the deviations are computed from the difference of the state estimator outputs

(based on SCADA measurements) and either the forecast-based predicted state estimates or

PMU data depending on the measurement configuration. This can be expressed as:



www.manaraa.com

54

xdev = xpred/pmu − xact (4.10)

where, xact represents the state estimator outputs, xpred/pmu represents either predicted state

variables based on load forecasts or PMU data, and xdev represents the deviation between

these two quantities. All these are n× 1 vectors corresponding to the n state estimates being

compared.

Step 5: Compare Deviations Against Threshold

The real-time deviations between the predicted/pmu measurements and state estimator

outputs are compared with an existing statistical model of the deviation obtained from histor-

ical data analysis. The historical data of load forecasts and SE outputs can be processed to

obtain a characterization of the variation to a reasonable accuracy of these load forecasts. In

order to keep the approach simple, mean and standard deviation are the statistical parameters

currently chosen for characterizing the deviation between the predicted and actual state esti-

mates. Extending the previous definitions, each element i in the xdev vector (n× 1) essentially

consists of a mean µ devi and σ devi. Depending on the measurement set, forecast accuracy,

and the availability of synchrophasor data each element in the µ dev and σ dev vector would

vary. The deviation of state estimates from the predicted values or PMU data for each state

variable is compared against a detection threshold. The proposed algorithm detects an anomaly

in the data if, for any state variable i,

|xdevi | > τ devi (4.11)

where, τ devi represents the detection threshold corresponding to each state variable i. If

this deviation does not fall within existing thresholds, the anomaly detection algorithm raises

alarms to indicate the possibility of data manipulation. An analysis of individual state vari-

ables’ variations could provide detailed information on the possible source of manipulations. In

order to mitigate the attack impacts, the mitigation should ensure that the state estimates are

not corrupted and the bad measurements are identified and removed. This could be achieved
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by triggering an on-demand run of the SE that includes additional detail by looking at a more

detailed (node-breaker level) network model to be used around the locations of the suspect

measurements [61, 62] identified in the anomaly detection. This essentially changes the mea-

surement configuration matrix (H) and includes redundant measurements, which enable better

bad data detection to identify and remove malicious measurements.

Computational Performance

There are two aspects to the proposed algorithm: offline characterization of the minimum

attack magnitudes and detection thresholds using historical data, online comparison of state es-

timator solutions to detect anomalies. Specifically, the offline characterization process involves

iterating over all the steps (1-5) for multiple days of archived state estimator solutions to obtain

the minimum attack magnitudes and detection thresholds. Because this is an offline step, there

is no real constraint on the time it takes for these runs. With respect to the online comparison

process, the algorithm needs to execute once concurrently with each state estimator run. In

our case, we assume this to be once every 5 minutes. Considering a real deployment with

utility scale systems, the proposed algorithm would leverage existing tools in the EMS that

solve linear optimization formulations and power flows in a computationally efficient manner

under this time constraint easily. Therefore, we do not expect any computational performance

bottlenecks.

Illustrative Example for the Proposed Algorithm

Figure 4.3 shows an illustrative example that walks through the algorithm for one of the

state variables θ2 in the IEEE 14-bus model (Figure 4.5), for a single execution of SE. In this

example, we use an arbitrary detection threshold (= 1.25σ) for the purposes of illustration.

However, we describe later how this threshold can be obtained systematically for each state

variable such that the false positives and false negatives are under specification. As shown in

Figure 4.3, the same process is repeated for all the other variables.
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Figure 4.3 Illustrative example for the proposed anomaly detection algorithm

4.1.3 Factors Affecting Performance

The proposed detection approach is based on a comparison of the predicted state estimates

that are generated based on load forecasts with the actual state estimator outputs. Therefore,

the following factors influence the performance of the anomaly detection method.

• Accuracy of the load forecasts (mean, standard deviation).

• Accuracy of measurements (traditional SCADA, PMU).

• Threshold for comparison with estimated states.

The performance of the proposed approach relies heavily on the availability of accurate

real-time, short-term load forecasts. Based on a review of current short term-load forecasting

methods in ISO’s, it has been observed that the accuracy of the forecasts are typically much

lower than SCADA measurements [74]. However, the accuracy of load forecasts, combined with

availability of synchrophasor data provides a coarse validation to detect large measurement

anomalies. Based on a recent study, it has been observed that the use of PMU measurements

can improve the accuracy of state estimates [75]. Therefore, this aspect contributes to an im-
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provement in the minimum measurement anomaly that can be reliably detected (with low false

positive and false negative rates). The minimum attack magnitude, and the detection thresh-

olds of the anomaly detection algorithm need to be obtained appropriately so as to ensure a

balance between false positive and false negatives. Another factor that influences that perfor-

mance of the proposed approach is the method that is used to compare the deviation against a

threshold. When the algorithm uses single values, its performance is often affected by spikes in

the load forecasts resulting in unnecessary false positives. In order to partially eliminate this,

we employ the concept of weighted moving average, where the algorithm constantly updates

a window of current and past values that are averaged to be used for comparison against the

threshold.

False Positives and False Negatives

Intuitively, the attack magnitude that can be detected depends on the typical range of

deviations that are considered acceptable. A very accurate forecast combined with PMU data

at available buses will help to significantly narrow the typical range and consequently provide

detection of smaller attack magnitudes. Another important factor in distinguishing attacks vs.

temporary abnormalities is the setting of detection threshold values for each state variable such

that the false positives and false negatives are acceptable. As is the case with any anomaly

detection approach, proper analysis and tuning of false positives and false negatives is extremely

critical.

By definition, false positives are the cases where the anomaly detection algorithm detects

an attack when there is none and false negatives represent the cases where the algorithm fails to

detect an attack. Similarly, we can define true positives and true negatives as cases where the

algorithm correctly detects an attack and no attack respectively. Based on standard definitions

[76], false positive rate (FPR) is defined as the ratio of false positives to the total negatives

(true negatives and false positives) in the dataset (Eq. 4.12). Similarly, false negative rate

(FNR) is defined as the ratio of false negatives to the total positives (true positives and false

negatives) in the dataset (Eq. 4.13). A complementary measure of false negative rate is the true

positive rate (TPR) or detection rate, which is defined as the ratio of true positives to the total
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positives in the dataset (Eq. 4.14). TPR and FNR are complementary measures and could be

used interchangeably. Ideally, we would strive to have a FNR close to 0, which translates to a

TPR close to 1. In the rest of our analysis, we would use FPR and TPR to identify the balance

between false positives and false negatives.

FPR = FP/(TN + FP ) (4.12)

FNR = FN/(TP + FN) (4.13)

TPR = 1− FNR = TP/(TP + FN) (4.14)

The FPR depends on the detection threshold for the deviations between predicted states

vs. state estimator outputs. A high threshold limits the false positives, but it also decreases

the TPR as the algorithm fails to detect certain attacks. On the contrary, a low threshold

causes several false positives, which are caused due to genuine random forecast fluctuations.

4.1.4 Empirical Method to Obtain Minimum Attack Magnitudes and Detection

Thresholds

In this section, we outline an empirical method that could be applied to obtain the design

parameters of the proposed anomaly detection algorithm. This involves identifying the optimal

balance point between the design parameters to meet the desired FPR and TPR. For a specified

measurement configuration, forecast accuracy, and a specified acceptable FPR and TPR cutoffs,

we can obtain the minimum attack magnitude and detection thresholds for each state variable

that would be used in the proposed anomaly detection algorithm.

Figure 4.4 shows the method that could be applied to obtain the minimum attack mag-

nitudes and detection thresholds. Step 1 is to define the system input parameters such as

measurement configuration, SCADA measurement accuracy, locations of PMU measurements

and their accuracies (optional), load forecast accuracy, load curves, etc., and target perfor-

mance measures such as FPR of less than 1% i.e 0.01 and TPR of greater than 95% or 0.95.

Step 2 is to generate load forecasts based on the input load profile. In our experiments we used

the load profile of an entire day coupled with several iterations of load forecasts as the nature of

load forecasts is random. Step 3 involves increasing the detection threshold from the base value
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Figure 4.4 Empirical method to obtain minimum attack magnitudes & detection thresholds
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until the FPR is under the desired FPR. This step is done to fine tune the detection thresholds

for a low FPR. Step 4 is to start from a base attack magnitude (i.e. injection of δ to a phase

angle) for each state variable. This attack magnitude would result in a particular TPR for

that state variable for the given load profile. Using the detection threshold identified in Step 3,

iteratively increase the attack magnitude from the base value until it meets the desired TPR.

This process finds the minimum attack magnitude that falls just outside the detection band

for a particular forecast accuracy. At the end of Step 4, we have a set of detection thresholds

and minimum attack magnitudes for each state variable that meet the desired FPR and TPR

respectively. Step 5 involves the performing the above process (Steps 2-4) for a large number

of trials due to the random nature of generating measurements, and load forecasts. In each

trial, we generate a fresh set of load forecasts (Step 2) and then proceed to Steps 3 and 4. Step

6 is to obtain the mean values of the minimum attack magnitude and detection thresholds for

each state variable that meets the desired FPR and TPR.

4.2 Case Study on IEEE 14-bus System

This section presents a detailed case study and performance analysis of the proposed

anomaly detection algorithm described in Section 4.1.2. The key motivation is to provide

an insight into the various factors that affect the performance of the proposed method, thereby

providing a better intuition about its capabilities and limitations. Figure 4.5 shows the IEEE

14-bus system model with a base case measurement configuration that is used in the perfor-

mance analysis. The load forecast accuracy information (mean and standard deviation) used

in the analysis is based on the information obtained from [74]. For simplifying our analysis, the

basic economic dispatch formulation without losses and also a DC power flow model is used in

our case study. This does not in any way reflect the limitation of the proposed algorithm as

can it be readily extended to complex economic dispatch formulation and the power flow for-

mulation, or equivalently an optimal power flow formulation that is used in the real-time power

system markets and operations. In the 14-bus power system model, under the DC power flow

model assumption, all voltage magnitudes are considered to be 1 p.u. Therefore, there are 13

state variables (phase angles) in the analysis, where one of the 14 phase angles is considered as
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a reference. The parameters (mean µ, and standard deviation σ) that are used to generate the

load forecasts, SCADA measurements and PMU measurements in the case study are provided

in Table 4.1.

Figure 4.5 IEEE 14-bus power system with measurement configuration

4.2.1 Experimental setup

In order to analyze the impact of the various factors over the performance of the proposed

anomaly detection algorithm, we consider the following scenarios in our analysis.

• Attack magnitude – 5 different attack magnitudes.

• Measurement configuration – Low (option 1), High redundancy (option 2).

• Forecast accuracy – Low (option 1), High forecast accuracy (option 2).
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Table 4.1 Experimental parameters for case study

Parameter Option 1 Option 2

Load Forecasts Accuracy µ = 0.00427,

σ = 0.051194

µ = 0.001,

σ = 0.01

SE Measurements 17 (low) 22 (high)

SE measurements Accuracy µ = 0.0,

σ = 0.001

µ = 0.0,

σ = 0.001

PMU measurements Accuracy µ = 0.0,

σ = 0.0001

µ = 0.0,

σ = 0.0001

Therefore, the total set of scenarios include a combination of 5 attack scenarios, 2 mea-

surement configurations, 2 forecast accuracies. Each of the scenarios mentioned above will be

evaluated for a typical stealthy false data injection attack as described in [77]. In each of the

scenarios, the following performance measures will be monitored: maximum deviation of pre-

dicted states vs. state estimates, false positives, false negatives. The first performance measure

is related to quantifying the variation of the difference in the comparison. A high variation

indicates that the detection band for the particular state variable is very broad, consequently

more attacks can go unnoticed. Conversely, a tighter variation indicates that a narrow de-

tection band can be used. In the context of the proposed anomaly detection approach, false

positives are the cases where the anomaly detection algorithm detects an attack where there is

none. Similarly, false negatives are cases where the anomaly detection algorithm fails to detect

an attack.

The experiment was carried out by analyzing the variation of the state estimates obtained

from traditional SCADA measurements and then comparing them with predicted states ob-

tained from load forecasts for a single day. The real-time 5 minute load information provided by

New-England ISO was used a data source in order to get a realistic load curve for the purpose

of our experimental study [78]. This load profile data was normalized and converted to per

unit in order to be used for our IEEE 14-bus system. The load forecasts were generated based

on the statistical characteristics mentioned in Table 4.1, which was obtained from a CAISO

study report [74]. A typical load profile over a day is shown in Figure 4.6.
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Figure 4.6 Typical daily load profile of sample data

The SCADA measurements used for SE were generated by adding measurement noise to

computed power flow solutions for each 5 minute load based on the accuracy parameters as

listed in Table 4.1. In certain experimental scenarios, we assumed that buses 2, 6, 8, and 9 (this

configuration provides complete observability with minimum PMUs) had PMU data, which

were generated by adding noise to the phase angles at these buses directly. The accuracy of

the PMU data generated were based on parameters as listed in Table 4.1. In our experimental

scenario, we assumed that the frequency of execution of state estimator is the same as the

frequency of real-time load forecasts, which is 5 minutes. Therefore, each experiment consisted

of running the economic dispatch and the SE for 288 intervals (24 hours * 12 5-minute intervals

per hour) throughout the day. For obtaining historical characterization of variation between

state estimates and predicted states, prior load profile information over a week was used from

[78].

The attack vector that has been used is the one specified in [77]. Specifically, for this case

study, the measurement meters that were corrupted by false data injections correspond to state

variables θ2, θ4, θ13. Over the course of one day, the measurements that corresponded to these

particular state variables were manipulated only between 4 AM and 4:40 PM on the day. This

was done to distinguish the performance of the method during normal and attack phases.
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4.2.2 Performance results

Figure 4.7 shows the deviation of the state estimates and load forecast-based predicted

states over the course of a day. The plot on the top shows the deviation of state estimates

from the predicted states during an attack and the bottom subplot shows the deviation during

normal condition. The y-axis indicates the difference of the state estimates and the predicted

states (in degrees). The blue line in the plot indicates the mean of the variation between the

state estimates and predicted states for a state variable, (θ13 in this case). Similarly, we can

obtain similar plots for each of the state variables. The green and red lines indicate 1 and 1.25

standard deviations for the variations. Analysis of the deviations for each state variables would

provide an insight about the detection thresholds, which could be used to clearly distinguish an

attack from an abnormal condition. In Figure 4.7, the variation in the lower plot mostly falls
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Figure 4.7 Deviation of predicted and actual state estimates over a day (θ13)

in the acceptable zone except for a few spikes which are due to forecast inaccuracies. Whereas,

in the top plot, we can see that the variation is outside the acceptable threshold throughout

the attack period in a particular day. This indicates that there is a potential case of data
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manipulation or anomaly in the data that has gone unnoticed in bad data detection. In our

case, this is the indication that state variable θ13 has been injected with an arbitrary error.

We can see that by observing these deviations it is possible to detect stealthy data injection

attacks, which cannot be observed by the traditional Bad Data Detection method that is based

on normalized measurement residuals.

4.2.2.1 Sensitivity Analysis

In order to identify the sensitivity of the proposed anomaly detection method to the var-

ious factors mentioned previously, a systematic study was performed by varying individual

parameters while keeping the others constant. For example, in order to study the sensitivity of

the anomaly detection method to forecasts, we fix a particular measurement configuration and

associated SE accuracy, fix the attack magnitude and perform the analysis over two possible

forecast accuracies. Also, the attack is performed only on a subset of the total 288 5-minute

intervals over the course of a day.
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Figure 4.8 Sensitivity to forecasts and synchrophasor data for θ2
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Figure 4.8 shows how the proposed anomaly detection method performs for two different

forecast accuracies (Cases 1 and 2). Also, it shows the performance when PMU measurements

are used instead of forecasts for a fixed attack magnitude (Case 3). For this scenario, the

experiments were performed keeping the measurement configuration corresponding to Option

2 as mentioned in Table 4.1. All the sub plots indicate the deviations of predicted states

vs. actual state estimates for θ2, which is a state variable whose corresponding power flow

measurements are under attack. The 3 subplots correspond to 3 cases, which are as follows:

• Case 1: Low forecast accuracy.

• Case 2: High forecast accuracy.

• Case 3: PMU data used instead of forecasts.

In Case 1, a very negligible portion of the deviation falls outside the typical range. In

this case, the anomaly detection method fails to detect the attack (false negatives) and the

deviations look similar to the case without attack. Whereas, for Case 2, with the same attack

magnitude and a higher forecast accuracy, the attack period can be clearly identified as the the

band of acceptable deviations is much tighter for this case.

4.2.2.2 Impact of PMU Data in Attack Detection

Case 3 shows how the proposed anomaly detection method performs in the presence of PMU

data for selected bus (bus 2) for the same attack scenario. The accuracy of the PMUs are as

defined in Table 4.1 and are based on observations from [75]. For case 3, we can clearly detect

the attacks when using PMU data instead of less accurate load forecasts as they are much more

accurate than forecast-based estimates. We can clearly see that the detection band gets tighter

and tighter with the use of more accurate predictions based on either better load forecasts or

PMU data. While this behavior is expected intuitively, the key is to understand how the false

positives and false negatives are influenced by these parameters. Therefore, the key takeaway

from Figure 4.8 is that the accuracy of the load forecasts or availability of secure PMU data

plays an important role in determining the minimum attack magnitude and the corresponding

detection thresholds for the proposed anomaly detection algorithm.
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Similar to the study with forecast accuracies, a comparison was made to see how the pro-

posed anomaly detection method performs for two different measurement configurations in the

SE. The corresponding accuracies of the measurements are as mentioned in Table 4.1. Based

on our observations, we found that for a given attack magnitude, there is no significant differ-

ence in the detection capability as the accuracy of state estimates is very close in both cases.

As forecasts are typically an order of magnitude less accurate than SCADA measurements,

any improvement in forecast accuracy, improves the performance significantly, whereas the

performance improvement is very minimal for an increase in measurement redundancy.

4.2.2.3 Analysis of False Positive and False Negatives
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Figure 4.9 Variation of FPR with threshold for state variable θ2

Figure 4.9 shows the variation of false positive rate for the state variable θ2 as a function of

detection threshold that is used for declaring the deviation between predicted vs. actual state

estimator outputs as anomalous. The detection threshold for each state variable was varied

from 0.5σ to 2σ and the corresponding FPR was observed. In order to avoid confusion, only
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the variation for θ2 has been plotted. As described earlier, the false positive rate decreases

sharply with increase in detection threshold. We observed a similar trend in the variation of

FPR vs. the threshold for all the other state variables as well. From Figure 4.9, we can see that

for threshold larger than 1.5σ, FPR of state variable θ2 becomes negligible (i.e. under 1%).

The distinction of forecast abnormalities from real attacks is a very important aspect for the

acceptable performance of the proposed method. This is determined by how well the historical

data that is used to obtain the base statistical parameters for the detection thresholds captures

this aspect. Another key factor is the determination of the right values for the detection

threshold that balances false positive rate and the false negative rate.
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Figure 4.10 Variation of TPR with attack magnitudes for two detection thresholds: 1.4σ

(dotted curve) and 1.6σ (solid curve) for state variable θ2

Figure 4.10 shows the variation of true positive rate for state variable θ2 for a set of attack

magnitudes from very low to very high magnitudes under 2 different thresholds: 1.4σ (dotted

curve) and 1.6σ (solid curve). These two detection thresholds that are shown have reasonably

low FPR for θ2. Intuitively, the TPR or the detection rate depends on attack magnitude. If
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we have attacks that are less than the minimum attack magnitude that can be detected by the

algorithm for a given set of load forecasts, then FNR tends to be high and the TPR tends to

be low and vice versa. We can see that around lower attack magnitudes for θ2 (0.005 - 0.01

radians), the variation of TPR with detection thresholds is noticable. As the attack magnitude

increases, TPR quickly approaches 1, and the variation of TPR due to detection thresholds

reduces. This figure along with Figure 4.9 helps to show the interplay between FPR and TPR,

wherein a high detection threshold is good for FPR, it is not optimal for TPR. Therefore, in

order to achieve optimal performance, we need to obtain the right balance between two design

parameters, i.e. the minimum attack magnitude that can be detected for a state variable and

its detection threshold.

4.2.3 Receiver Operating Characteristics (ROC)

ROC plots serve as a useful tool to analyze the performance of anomaly detection algorithms

and identify tradeoffs between true positive rates and false positive rates for various decision

classifiers [76]. Since our anomaly detection algorithm produces only a ‘yes’ or ‘no’ classification,

it belongs to the category of discrete classifiers. Therefore, it produces only a single data point

in the ROC space for each dataset. Figure 4.11 shows the various data points in the ROC

space for 2 different attack scenarios: low (asterisk), and high (diamond) attack magnitudes

over a range of detection thresholds used for anomaly detection for state variable θ2. The

magnitude of the low and high attack scenarios are 0.5∗m att mag and m att mag respectively,

where m att mag represents the minimum attack magnitude corresponding to state variable

θ2. The minimum attack magnitudes for each state variable can be obtained by applying the

methodology described in Section 4.1.4. Please refer to Table 4.2 for specific results. For each

of the two attack scenarios considered in Figure 4.11, there are 16 points in the ROC space,

and each point corresponds to a particular detection threshold, which was varied from 0.5σ to

2.0σ.

In general, the farther north-west of the diagonal line a classifier is in the ROC space, the

better the performance of the algorithm. From Figure 4.11 we can clearly observe that the

proposed anomaly detection algorithm performs very well for the attack scenario with high
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magnitude as it has low FPR and high TPR for a range of thresholds. For attack magnitudes

that are lower than the minimum attack magnitude as is the case with the low attack magnitude

scenario, the FPR and TPR performance of the algorithm is highly sensitive to thresholds. From

Figure 4.11, we can see that even for the low magnitude attack case with 0.5∗min attack mag

for θ2, the proposed algorithm was able to detect attacks with about 80% TPR and 10% FPR

for a certain detection threshold.
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Figure 4.11 Points in ROC space for low (asterisk) and high (diamond) attack magnitudes

with multiple detection thresholds for state variable θ2

4.2.4 Minimum Attack Magnitudes and Detection Thresholds

Based on the earlier results, we can infer that FPR is dependent on the detection threshold

that is used for declaring deviations as anomalous or normal. Also, we can see that if we use a

very high threshold for eliminating false positives, that adversely impacts FNR or TPR, which

impacts the minimum attack magnitude that can be reliably detected by the algorithm.
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We used the empirical method shown in Figure 4.4 and obtained the minimum attack mag-

nitudes and detection thresholds for all the 13 state variables in the IEEE 14-bus system. The

target FPR and TPR were chosen to be 1% and 95% respectively, for forecast and measure-

ment accuracies as mentioned in option 1 of Table 4.1. Table 4.2 shows the mean minimum

attack magnitude and detection thresholds for all state variables that were obtained based on

our simulation runs using the empirical method proposed earlier in Section 4.1.4.

Table 4.2 Minimum attack magnitudes and detection thresholds for IEEE 14-bus system

State

variable

Minimum attack

magnitude (radians)

Detection

threshold

θ2 0.012 1.66 σ

θ3 0.014 1.58 σ

θ4 0.013 1.6 σ

θ5 0.012 1.61 σ

θ6 0.023 1.54 σ

θ7 0.018 1.55 σ

θ8 0.018 1.59 σ

θ9 0.021 1.55 σ

θ10 0.023 1.55 σ

θ11 0.024 1.54 σ

θ12 0.028 1.52 σ

θ13 0.024 1.56 σ

θ14 0.022 1.57 σ

Based on information provided in [79], the maximum acceptable deviation in line flows

based on state estimator solutions is 10% of the line rating, which is equivalent to 0.1 p.u. In

order for the proposed anomaly detection algorithm to be relevant for practical application,

the minimum attack magnitude that can be detected should be comparable to this range. In

our experiments, for state variable θ9, 0.021 radians was the minimum attack magnitude that

met the specified FPR and TPR constraints of 0.01 and 0.95. This attack magnitude could

be translated to an equivalent change in line flow of about 0.095 - 0.098 p.u depending on

the operating conditions. Therefore, even though the algorithm cannot detect any attacks

under this limit for the given forecast accuracies, the low magnitude attacks would not cause

a significant impact in real-time operations and markets. However, the proposed algorithm is
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effective against detecting measurement anomalies that could cause significant operational or

market impacts. Also, its performance can be further enhanced with a hybrid combination of

more accurate forecasts and increased PMU deployments.

4.3 Conclusions

In this work, we proposed a model-based anomaly detection approach that utilizes informa-

tion that is essentially independent of traditional SCADA measurements to detect measurement

anomalies due to stealthy cyber attacks. We described a detection methodology that leverages

load forecast information, generation schedules, and synchrophasor data to obtain a statisti-

cal characterization of the variation between SCADA-based state estimates and forecast-based

predictions to detect anomalies. We provided key insights about various factors that impact

the performance of the proposed algorithm. We also outlined an empirical method to obtain

the minimum attack magnitude and detection thresholds for each state variable such that it

satisfied a target FPR and TPR specification for the proposed algorithm.

We presented a detailed case study of the proposed algorithm on the IEEE 14-bus system

where we evaluated its performance under different experimental scenarios. We observed that

the performance of our proposed approach depends primarily on forecast accuracy and the

addition of PMU data improves its performance further. We also observed that the false

positive rate is dependent on the threshold for deviations of predicted vs. actual state estimates.

We identified that the true positive rate or the detection rate increases with increasing attack

magnitudes, but decreases with increasing detection thresholds. We also obtained the minimum

attack magnitudes and detection thresholds for each state variable in the IEEE 14-bus system

for meeting target FPR and TPR through simulation studies.
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CHAPTER 5. TESTBED-BASED EXPERIMENTATION AND

EVALUATION FOR WAMPAC

Cyber security of critical infrastructures (CI) like the power grid is becoming extremely im-

portant and is currently one of the top R&D priorities globally. It is quite obvious that existing

operational systems cannot be used to perform various types of cyber security experiments to

discover vulnerabilities and fix them. CPS security testbeds serve as test environments, which

can be used to perform various types of cyber attack and defense experimentation using a hy-

brid combination of real, simulated and emulated components that represent the real world as

closely as possible. The real utility of testbeds over traditional standalone simulation tools is

the ability to model complex cyber-physical interdependencies and their relevant interactions

across multiple domains such as computation, communication and physical systems in a single

coherent environment. One of the distinguishing features of CPS testbeds is the ability to

map real hardware devices seamlessly into the experimental framework to perform real-time,

hardware-in-the-loop experiments, which allow the ability to observe computation, commu-

nication and physical system dynamics together, some of which otherwise would have been

abstracted away due to shortcomings in the modeling platform.

5.1 Motivation for Testbed-Based Experimentation for WAMPAC

The need for CPS security testbeds is driven by the fundamental limitation that traditional

simulation-based tools cannot capture the dynamics of control, communication and physical

systems in a single environment. Testbeds provide this capability by having a combination

of real hardware devices, automation software, and communication protocols, combined with

emulated devices and simulated systems such that the essential behaviors and cyber-physical in-
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teractions are captured accurately. Testbeds serve as a validation platform for a broad spectrum

of research areas like vulnerability assessment, impact analysis, risk assessment, risk mitiga-

tion, and other real-time defense algorithms against various forms of cyber attacks such as data

integrity attacks, timing and replay attacks, and denial of service attacks. In addition, testbeds

provide a platform to accelerate development of countermeasures (secure architectures and al-

gorithms) and evaluate/validate their effectiveness/adequateness. Testbeds not only serve as

a validation platform for research and engineering development, but also serves as a power-

ful training and educational environment, which could be leveraged to provide classroom and

laboratory-based coursework. Also, CPS security testbeds can be used a training ground for

active, grid-wide, national cybersecurity exercises like NERC GridEx [80, 81] to improve cyber

security preparedness and response capabilities in defending the critical infrastructures against

various cyber threats.

5.2 Testbed Design Objectives and Tradeoffs

5.2.1 Design Objectives

The key design objectives [82] for a CPS security testbed include:

• Modularity - being composed of different functional units, which do not affect each other‘s

functionalities and could be abstracted depending on experimental needs.

• Scalability - the ability to be able to increase/decrease the size of the system to be modeled

without loosing out on the ability to integrate real hardware.

• Repeatability - the ability of the testbed platform to be able to consistently reproduce

identical results for repeated trials of an experimental scenario.

• Re-configurability - the testbed should be able to support multiple configurations that

allow a variety of experimental scenarios using the same hardware or tools.

• Interoperability - components in the testbed should be replaceable seamlessly provided

they have similar functionalities and interfaces such as communication protocols and

services.
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While CPS testbeds provide modeling of computation, communication and physical system

dynamics in a single environment, there are several design challenges because of the necessity

to have real and emulated devices interacting with simulated components. Some of the key

challenges in designing a CPS security testbed are: accuracy, scalability, realism, and cost.

The modeling accuracy is driven by the interdependencies that are to be modeled. Realism

is closely associated with modeling accuracy and is based on how close the simulation models

capture real-world behaviors. The scalability of the system is limited by the amount of physical

hardware that is available to be mapped into the experiment and also mostly by the capability

of the real-time simulation tools that model the physical system. It is straightforward to

understand how these two factors interact with cost: a system with all real hardware would

be extremely expensive, but would have a high modeling accuracy; whereas, a system with all

simulated components would be cheap, but would loose out on the modeling accuracy.

5.2.2 Testbed Design Tradeoffs

One of the main challenges in developing a large-scale, high-fidelity CPS security testbed

is the cost of the various systems and devices. Testbed design is a challenging task, which

involves finding the optimal balance between scalability, accuracy, realism, and cost.

Optimal CPS testbed design involves the identification of the right level of balance between

these competing factors using a hybrid combination of simulated components, emulated com-

ponents and real physical components. The design of the CPS testbed should carefully consider

the type of experimental use case scenarios that would be implemented on it. Figure 5.1 shows

the various types of testbeds across a broad spectrum and their design tradeoffs.

For example, a testbed that is built to test/prototype a new protection device would require

a real-time power system simulator with the capability to interface real devices through its

analog and digital I/O’s along with the associated communication protocols. Similarly, a

testbed that is expected to test market algorithms would require a network of multiple market

agents that are deployed on computing nodes distributed realistically over an emulated wide-

area communication network.

Each type of testbed has a specific set of use cases that could be supported as one or more
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Figure 5.1 Types of testbeds

design tradeoffs are made. Figure 5.2 shows the relative ordering of these factors for the various

testbeds. In the figure, these factors are arranged in concentric diamonds ranging from low to

high representing scores from 1 to 3 respectively. A score of 1 for cost indicates low cost vs.

a score of 3 indicates high cost. Similarly, for scalability, realism and accuracy, a score of 1

represents poor and so on. Based on this qualitative ranking of low to high for various factors,

we can intuitively get a feel for how various testbed types tradeoff the design factors.

While test ranges and pilot deployments score high on realism and accuracy, they lack

scalability and are extremely expensive options for WAMPAC cyber security experimentation.

Also, the availability and configurability of such testbed types is very limited for different types

of experimental scenarios.

Simulation-based testbeds, commonly used to refer to ‘non-real-time’ power system simu-

lation tools, score highly on model scalability and cost very less money. However, they score

very low on realism and accuracy as they cannot support integration of real hardware devices

and often are incapable of modeling communication network behaviors and anomalies during

cyber attacks accurately.
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Figure 5.2 Design tradeoffs for different types of Testbeds

Hardware-in-the-loop (HIL) testbeds, commonly used to refer to testbeds that consist of

‘real-time’ power system simulators in combination with physical hardware and real network

emulators, serve as ideal middle grounds in the spectrum of testbeds that not only capture

communication layer aspects accurately, but also allows researchers to uncover anomalous be-

haviors involving real hardware and communication protocols under realistic attack conditions

that cannot be modeled on pure simulation-based approaches statically. The next section will

provide a detailed walkthrough of the uniqueness of HIL testbeds for cyber security for common

WAMPAC use cases.

5.3 Uniqueness of HIL Testbeds for Supporting WAMPAC Cybersecurity

Use Cases

In this section, we would like to discuss the uniqueness of HIL testbeds to support WAMPAC

cyber security use cases that regular non-real-time simulation-based tools cannot provide. Fig-

ure 5.3 shows a comparison between HIL real-time testbeds and non-real-time simulation-based

power system simulation tools for supporting cyber security use cases with common WAMPAC
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applications. It is to be noted here that because specialized testbeds such as test ranges and

pilot deployments, though very realistic and accurate, are extremely expensive and not flexible

for varied experimentation. Hence, they have not been included in the comparison.

Figure 5.3 Comparison of HIL and simulation-based testbeds

One of the common disadvantages that we could observe against simulation-based testbeds

for supporting WAMPAC use cases is the shortcoming that because these testbeds rely on ‘non-

real-time’ power system simulators, they cannot interact with other network simulators and/or

real hardware. This places hard constraints on the modeling of the attacks within the power

system simulators and therefore the attack actions are abstracted. This restricts the attack

implementation and evaluation to be separate and within the network simulation or emulation

tools. The combined analysis of network-based cyber events with the WAMPAC application in

the power system simulation cannot be performed together.

5.3.1 Timing is Critical

One of the unique capabilities offered by HIL testbeds due to the combined modeling of

control, network and physical systems in a common environment is the ability to model timing

related impairments and observe its effect on not only the WAMPAC application use case being
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considered, but also on the overall power system reliability and stability. Specifically, as an

example, the PowerCyber testbed was used to validate the hypothesis that timing is a critical

parameter that could be favorably exploited by the attacker in executing coordinated attacks

in addition to spatially coordinated attack actions. In Section 5.8.1 shows how the PowerCyber

HIL testbed was used to study the impact of varying the timing between two attack actions

(data integrity and DoS) on a RAS.

5.3.2 Network Behaviors During Attacks

HIL testbeds consist of a mix of emulated and actual hardware to enable the realistic mod-

eling of network characteristics such as latency, jitter variations during experiments involving

DoS attacks and provide variable delays in communication. Referring to the RAS example cited

earlier, the case study in Section 5.8.1 presents results on how the coordinated attack resulted

in a failure of RAS under range of DoS attack thresholds based on whether the network was

attacked or the relay. Such type of effects cannot be captured on simulation-based testbeds as

‘non-real-time’ simulation tools cannot interact with real or emulated hardware properly.

5.3.3 Modeling Communication Protocols

HIL testbeds capture the probabilistic behavior of communication protocols on realistic

networks that may not be modeled accurately with simulation-based tools. Considering the

example of the coordinated attack on RAS again (Section 5.8.1), one of the unique aspects that

was observed during the experimentation was that even under heavy DoS attack magnitudes,

valid traffic would sneak through to enable successful execution of RAS. Such behavior resulted

in the attack success being probabilistic rather than being deterministic due to the nature of

the GOOSE protocol. Even though certain network simulation tools can model some of these

behaviors they cannot be used in combination with power system simulation due to the non-

real-time nature.

We discussed several unique features offered by HIL testbeds especially for supporting

WAMPAC use cases. A lot of realism and accuracy is lost when these use cases are executed

on non-real-time simulation-based tools when compared to HIL testbeds. While scalability is
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often the bottleneck to HIL testbeds, federation approaches try to improve scalability of HIL

testbeds without compromising too much on realism and model fidelity.

5.4 Testbed Engineering Methodology - From Use Cases to Requirements

and Architecture Elements

Overall, the engineering methodology for a testbed should be firmly driven top-down start-

ing from the use cases that need to be supported. This begins by defining critical requirements

that need to be satisfied by the testbed for supporting the use cases. Based on the require-

ments, the use cases would then be realized by executing strategic testbed engineering tasks.

These research tasks should synergistically leverage existing testbed resources to provide a

platform for the development of innovative approaches for WAMPAC cyber-physical security.

Figure 5.4 shows the mapping of WAMPAC experimental use cases into testbed requirements,

then shows how these requirements could be satisfied by the testbed engineering tasks that

leverage underlying testbed infrastructure resources.

5.4.1 Testbed Use Cases for WAMPAC Cyber Attack-Defense Experimentation

The design and engineering of CPS security testbeds for WAMPAC cyber-physical security

should cover a set of topics typically spanning the entire spectrum of research. The use cases

could be broadly categorized into:

• Vulnerability assessment - This covers the use cases that target a systematic assessment

of systems (WAMPAC applications, software), devices (hardware), and communication

protocols. One example of a vulnerability assessment specific to WAP application such

as a RAS would be the identification of a coordinated attack vector that involved a com-

bination of data integrity and DoS attacks to prevent proper operation of RAS controller.

• Impact assessment - This covers use cases that focus on the quantification of the impact

of a particular type of cyber attack (data integrity, DoS, coordinated attacks) on the

power system and the specific WAMPAC application. One example would be the impact
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Figure 5.4 Testbed engineering methodology
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assessment of stealthy cyber attacks that impacted AGC measurements to cause undesired

frequency conditions, eventually leading to under-frequency load shedding (UFLS).

• Implementation and performance evaluation of CPS-based counter measures - This covers

the use cases where the effectiveness of a particular counter measure is evaluated against

known attack vectors to validate them. One example would be evaluation of CPS model-

based attack-resilient control algorithm [83] for stealthy measurement attacks on AGC.

5.4.2 Testbed Requirements

In order to support the use cases identified, we carefully synthesized six critical requirements

that need to be supported as part of engineering the testbed. The essential testbed requirements

that need to be supported are:

• (R1) Realism - The capability to mirror real-world as close as possible. This typically

involves emulation of hardware devices and support for hardware in the loop experimen-

tation.

• (R2) Scalability - The ability to increase the size of the power system simulation without

trading off real-time execution, model accuracy and hardware in the loop integration

capabilities.

• (R3) Automation - The capability to perform automated actions that could be scripted to

enable setup and teardown of several types of real and emulated devices, virtual machines

and real-time simulators for complex experimental use cases.

• (R4) Isolation - The ability to isolate multiple experiments such that there is support for

running experiments in parallel leveraging exclusive subset of computational resources on

the real-time simulator and physical/emulated devices.

• (R5) Interoperability - The capability to support integration of diverse vendor agnostic

hardware with similar functionality based on common standards.
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• (R6) Quantitative - The capability to support measurement of various experimental pa-

rameters and states across control, communication and physical layers, and also the ability

to produce repeatable experimental results.

5.4.3 Testbed Engineering Tasks

These testbed requirements that have been identified serve as a concrete basis for the

development of testbeds to support WAMPAC specific cyber-physical attack defense experi-

mentation. The testbed engineering tasks that are needed to support the requirements are

listed below:

• HIL - Providing support to enable interfacing of real-hardware components in conjunction

with real-time power system simulators.

• Federation & virtualization - Leveraging testbed resources through interconnection of

network layers, addressing experimental scalability through virtualization and emulation

of ICS devices.

• Orchestration - Providing flexibility, and automated experimentation capabilities to test

multiple scenarios in an automated manner.

• Security tools - Developing and providing standard tools to perform vulnerability as-

sessments, and test known attack scenarios by performing orchestrated attack actions

automatically.

• Sandboxing - Supporting isolation of experiments through virtualization of computing

resources and also through network segmentation.

• Standards-driven - Allowing for interoperability by integrating hardware and software

components that comply with common industry standards for modeling and communica-

tion.

• Metrics - Developing quantitative metrics to measure experimental results and perform

validation.
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5.4.4 Testbed Infrastructure Resources

Each of these eight strategic testbed engineering tasks would leverage the testbed infrastruc-

ture resources such as physical systems, industrial control systems and cyber systems. These

include a broad spectrum of various hardware and associated software pertaining to the cy-

ber, control, physical and communication systems, such as real-time power system simulators,

SCADA devices such as RTUs, protection relays, and PMUs along with their associated com-

munication protocols, SCADA systems at the control center needed for various analytics such

as EMS, Distribution Management Systems (DMS), networking components such as routers,

switches, firewalls, VPNs, etc., and standard cybersecurity toolsets.

5.5 Testbed Conceptual Architecture for WAMPAC Experimentation

A typical CPS testbed conceptual architecture can be explained with the help of a layered

abstraction approach, based on each layer’s functionality [82]. This method of functionally

organizing the testbed helps to vary models that are used for different use case scenarios and

abstract the unnecessary details appropriately.

5.5.1 Generic Layered Architecture

Figure 5.5 shows the conceptual testbed architecture with the three different layers, namely,

information/control layer, communication layer, and physical layer.

5.5.1.1 Information/Control Layer

This layer consists of devices/ software components that act on the various analog and

status measurements coming from the substations to perform monitoring and control of the

physical system components. Specifically, this layer consists of the SCADA EMS, that perform

various analytics at the control center like SE, AGC, CA, etc., substation automation system

(SAS) hardware and software including RTUs that collect data from the different IEDs deployed

in the field like protective relays and PMUs.
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Figure 5.5 Layered Testbed Architecture

5.5.1.2 Communication Layer

This layer consists of the network infrastructure that interfaces the control layer with the

physical layer. Specifically, this layer consists of the network infrastructure that emulates

wide-area network routing, network routers and switches, security devices like firewalls, intru-

sion detection systems, and the communication protocols that are used to enable intra and

inter-substation communications (e.g. distributed network protocol (DNP) version 3, IEC

61850 manufacturing message specification (MMS), IEC 61850 generic object oriented events

(GOOSE), IEC 61850 sampled values (SV)), and wide-area communications with the control

center (e.g. DNP3, Modbus).

5.5.1.3 Physical Layer

This layer consists of the components/devices that model the physical system. Typically,

this layer consists of real-time power system simulators with the ability to interface real devices

to perform hardware-in-the-loop experiments. The capability to interface with real devices with

real communication protocols allows a realistic testing of the various attack/defense scenarios.

Also, this helps to study the impacts of malicious events in the SCADA control layer (say the
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opening or closing of a breaker) on the physical layer (in the power grid) and the communication

layer (in the wide-area network) in real time and vice-versa.

Figure 5.6 WAMPAC-specific testbed conceptual architecture

5.5.2 Addressing WAMPAC Cybersecurity Research Challenges

Based on the three-layered abstraction shown, Figure 5.6 shows a CPS testbed architecture

specifically for WAMPAC cyber security use cases that address the following research challenges

specific to cyber attack-defense experimentation:

1. Modeling of information/control layer - Explicitly modeling the WAMPAC appli-

cations’ functionality without abstracting away communication aspects like simulation-

based environments using real/emulated components. This enables the study of network

conditions such as packet drops, retransmissions and congestion on the power system

impacts with/without the presence of attacks.

2. Modeling network layer - Modeling realistic network communication through real/emulated

network environments that enable deployment of a mix of real/emulated devices using
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real-world SCADA communication protocols, and supporting the study of network-based

cyber impairments on WAMPAC applications such as latencies, delay jitter, etc.,

3. HIL experimentation - Providing multiple types of interfacing capabilities such as

direct analog interfacing with and without amplifiers, digital interfacing to allow ex-

change of status and control bits, and real-time network-based interfacing using SCADA

communication protocols to also support fast time-scale WAMPAC (synchrophasor and

protection) applications.

4. Modeling physical layer - Enabling real-time simulation that models the power system

components with high-fidelity to allow cyber-physical coupling allowing HIL for conduct-

ing realistic experiments to study grid impacts due to cyber attacks. In order to drive

physical hardware, the power system simulation model needs to execute in real-time and

capture electro-magnetic transient phenomenon to provide high fidelity.

5.6 Challenges for CPS Testbed Federation to Conduct Large-Scale

WAMPAC Cyber Attack-Defense Experimentation

We believe that some of the reasons for existing testbed federation efforts not achieving

widespread success and adoption are due to a lack of systematic analysis into the various

barriers to federate testbeds taking into account the technology constraints and application use

cases holistically. However, as part of this work, we would like to underscore the importance

of: (i) understanding the technology constraints to interconnect simulators, (ii) identifying the

specific use cases that can be modeled with federated testbeds at the different layers, while

still providing benefits of scalability and realism. Therefore, the remainder of this section will

identify major barriers to testbed federation and potential ways to overcome them to leverage

testbed federation wherever possible.

5.6.1 Power System Simulation vs. Network Latencies

High-fidelity, large-scale, real-time power system simulation is one of the main factors that

motivates federation of testbeds as existing power system simulator resources at the major
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CPS testbeds in the country cannot scale to large-scale systems. Yet, ironically, high-fidelity,

real-time power system simulation presents the biggest technology barrier to federate testbeds

at the physical layer. Existing high-fidelity, real-time power system simulators typically run

at a time-step of 50 µs for performing an electromagnetic transients-based (EMT) simulation,

while the average network latency to interconnect remote testbed sites across a few thousand

miles typically is around 30-60ms. Because wide-area network latencies are orders of magnitude

slower, interconnection of real-time simulators with physical hardware in the loop across remote

sites is nearly impossible at high simulation fidelities. Therefore, existing attempts at testbed

federation have relied on centralized power system simulation at one site while choosing to

federate the cyber layer across testbed sites or on loosely coupled/independent power system

simulation across remote testbed sites [84, 85].

Alternatively, the idea of multi-fidelity, real-time power system simulation seems to slowly

gain traction. This would enable the simulation of a large-scale system model with a medium

level fidelity, with specific areas of the system modeled in greater detail at high fidelity. Also,

such an approach would enable federation of real-time, power system simulators across domains

such as transmission and distribution co-simulation, where one testbed site simulates the large-

scale transmission system model, and the other sites simulate the distribution system models

that plug into the transmission system model. There has been some recent proof-of-concept

work done to interconnect power system simulators over a wide-area network for T&D co-

simulation demonstrating the feasibility of testbed federation at the physical layer [86].

Adopting a similar approach for performing testbed federation across T&D domains would

enable wide-area distributed co-simulation-based use cases, as distribution system simulation

time-scales are typically slower (order of ms to s) than transmission system for real-time simu-

lation. Another approach to enable testbed federation across at the physical layer would involve

potentially leveraging some existing research on hybrid simulation models that merge extremely

high-fidelity electro-magnetic transient simulation models with transient stability phasor-based

simulation models as described in [87, 88]. Under such an approach, specific parts of the sys-

tem under study could be modeled in greater detail, while the interface between two simulators
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could be performed at the transient stability simulation time scales to minimize degradation of

model fidelity due to network latencies.

5.6.2 Centralized vs. Decentralized Architecture

Centralized architecture – Figure 5.7 presents a centralized architecture that enables

federation of testbeds at the control layer level, similar to how real control areas in the power

grid share information and resources. In this case, the level of federation is limited to exchange

of information at the system level and not a direct resource sharing at the individual device

level, where individual devices can be controlled and/or monitored by multiple testbeds. This

type of federation allows for limited control and because the interaction is at the higher level,

this approach is mainly suited for system level applications.

Figure 5.7 Centralized testbed federation architecture

Decentralized architecture – Figure 5.8 presents a distributed architecture for testbed

federation that involves a modular approach, where multiple testbeds can be combined at the

communication layer, and each of the testbeds either contain the control layer components

(like EMS, RTUs, SAS), or physical layer components (like real-time power system simulators,

field devices like relays, etc.), or a combination of all three. This type of flexible integration

provides a much more fine-grained sharing of resources across locations in a single experiment.

Though this approach is reasonably scalable for realistic experimentation, there could be some

challenges for supporting applications of fast time scales.
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Figure 5.8 Decentralized testbed federation architecture
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When deciding on the federation architecture that is required, it is essential to study and

characterize the different CPS security research applications based on the timescales and the

coordination required so that the appropriate strategy can be identified.

Recently, there have been advancements in the domain of real-time power system simulation

that enable a large-scale, phasor-based simulation to run at timesteps of around 1-10 ms [89].

Phasor-based simulations are based on certain approximations of system component models

such as machines (generators/motors), transmission lines, and loads. Therefore, they are not

as detailed and accurate as EMT-based simulations. However, depending on the specific use

case and the application being modeled, the loss in modeling accuracy might be traded off for

scalability, enabling large-scale, centralized power system simulations. This would relax the

tough constraints on exchanging messages between remote power system simulators frequently

to prevent a loss in modeling fidelity. A centralized power system simulation in a federated

experiment will result in only the cyber layer resources being distributed across testbed sites

and such interconnections are often not constrained by network latencies. Detailed performance

evaluations on the appropriate type of power system simulation approach that is needed for

specific use cases and applications has still not been performed and documented extensively.

There is no general consensus on this and it remains an open issue that merits further interest

and exploration by the research community.

5.6.3 Interoperability & Standardization

While the availability of standardized hardware resources and power system simulators

would be ideal to federate testbeds at remote sites across cyber and physical layers, such a

scenario is not practical. One of the barriers that needs to be overcome is the interoperability

of various types of hardware resources across the different federated testbed sites such as the

IEDs or protection relays, PMUs, RTUs, and programmable logic controllers (PLC). While the

notion of interoperability enables devices with similar functionalities to communicate with each

other seamlessly over standard interfaces and communication protocols (Modbus, DNP3, IEC

61850, C37.118, ICCP), oftentimes there still are various differences in implementations that

make interoperability difficult.



www.manaraa.com

92

5.6.4 Experiment Orchestration & Troubleshooting

One of the major challenges in large-scale, federated cyber-physical security experimenta-

tion is the ability to automate the various configuration/setup actions, the attack actions and

the defense measures, and reverting back to baseline configurations through a well-designed

orchestration framework. While the DETER testbed environment provides a web-based or-

chestration framework [53], there are additional complexities involved in automating the con-

figuration/setup of SCADA/ICS devices such as RTUs, relays, PMUs and PLCs. Some of the

software used to set the devices are GUI-based and require additional effort to automate and

orchestrate as part of the framework.

Extending the discussion on experiment orchestration, troubleshooting and reverting to a

known baseline configuration for the hardware devices and software is extremely critical.Especially

with cyber security experiments, there could be possibilities of devices becoming unresponsive

or software crashing leading to the need to perform power reboots and/or reconfigurations. It

is extremely important to have skilled personnel at each site for technical support and main-

tenance of testbed infrastructure and issues during experimentation, especially a federated

experiment involving multiple sites.

While it is extremely difficult to completely automate all tasks as part of a federated

testbed experiment through an orchestration framework, it is extremely critical to have some

core features as part of the orchestration framework at individual testbed sites to allow for

provisioning of cyber resources such as virtual machines, and network configurations that are

more amenable to automated configuration, deployment and management.

5.7 PowerCyber Testbed Implementation Architecture

Figure 5.9 shows the current implementation architecture of the PowerCyber testbed. The

SCADA portion of the testbed is composed of industry-grade hardware/software from Siemens

that include substation automation system (SICAM PAS), control center software (Power TG),

SCADA and and multifunction protection relays (7SJ610, 7SJ82). Recently, the testbed has

been integrated with three Schweitzer Engineering Laboratories (SEL) 421 PMUs and a syn-
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Figure 5.9 PowerCyber testbed architecture

chrophasor vector processor. The EMS software runs on two workstations in a primary-backup,

hot standby configuration. There are two software RTUs running the SICAM PAS substation

automation systems, which represent two substations, and each of them are connected to a

Siemens SIPROTEC Multi-function relay and a SEL 421 PMU. Apart from these two RTUs,

the testbed leverages virtualization technology to spin up several RTU virtual machines on a vir-

tualization server (VMware ESXi), depending on the experimental requirements. These virtual

RTUs can also be interfaced to appropriate physical relays or to the power system simulators

directly to receive/send SCADA measurements/control. The physical relays in the testbed

communicate with the RTUs through IEC 61850 MMS protocol and the RTUs communicate

with the control center EMS using the DNP3 protocol.

In the testbed, we have two real-time power system simulators, one from Real Time Digital

Simulator (RTDS) and another from OPAL-RT. Both of these real-time simulators are used

based on appropriate experimental needs and both provide an accurate, high-fidelity, real-time

power system simulation enabling hardware-in-the-loop experimentation. The simulators are

directly interfaced to the Siemens relays using the IEC 61850 GOOSE protocol, while the
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SEL PMUs are interfaced to the simulators through analog interfacing as well as through the

GOOSE protocol. This allows the study of the impact of switching events in the SCADA

control layer (say the opening or closing of a breaker) on the physical layer (in the power grid)

in real time and vice-versa.

The communication between RTUs and control center takes place over an Ethernet-based

Wide-Area Network provided by the ISERINK platform. ISERink is a virtual environment for

cyber defense competitions, and attack-defense evaluations [90] and creates a dynamic network

infrastructure similar to real SCADA network through the emulation of routers. In order to

encrypt the traffic between the control center and the substations, the testbed uses SCALANCE

network security devices from Siemens, and traditional linux-based firewall and VPN software.

Vulnerability assessment capapbilities are based on a set of free and open-soure software tools

such as NMap, Nessus, Wireshark, Metasploit and many others that are part of the Kali Linux

distribution.

5.8 Experimental Case Studies on WAMPAC Applications

5.8.1 Coordinated Attack-Defense Experimentation on Wide-Area Protection

This section describes a case study that involves coordinated attacks on a WAP scheme

and is described in detail in [25]. In this particular case study, we show how the PowerCyber

testbed was used to replicate the conditions of a RAS and study the impact of coordinated

cyber attacks on the power system. The WECC 9-bus system, shown in Figure 5.10 was chosen

as the power system for our case study. The particular RAS that was adapted for this case

study was taken from the WSCC RAS list [91] and is explained below.

The RAS scheme is designed to trip one of the generation units at bus 2, (modeled by a

reduction in the generation), if there is a fault on one of the transmission lines connected to it.

In our case there are two transmission lines, namely, 7− 8 and 7− 5. The RAS scheme would

be armed only if generation at bus 2 exceeds a particular value. This generation would have

to be reduced to prevent the thermal overloading of one of the transmission lines in case of a

fault on the other line and also to maintain the stability of the generation units.
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Figure 5.10 IEEE 9-bus system with RAS mapping

Typically, for every RAS, there is a RAS controller, which determines when the scheme is

to be armed and also sends appropriate commands to the corresponding relays that are part

of the scheme. In our case, the controller sends a trip command to one of the generation units

at bus 2 when it receives a fault indication from one of the relays on the transmission lines

7 − 8 or 7 − 5. In our experimental scenario, the RAS controller is mapped to one of our two

physical relays (Relay 1) interfaced to the RTDS. The RAS is triggered by tripping the relay

(Relay 2) protecting line 7 − 5. This causes Relay 2 to send a GOOSE message to the RAS

controller indicating that it has tripped. Based on whether the RAS was armed or not, the

RAS controller responds back with a IEC GOOSE message to the relay (modeled inside RTDS)

which controls the breaker commands for the tripping of one of the generation units connected

at bus 2 to reduce generation and thereby prevent thermal overload of line 7− 8.

5.8.1.1 Coordinated Attack Template

The case study involves the execution of a coordinated attack to prevent the RAS from

operating and reducing the loading on the transmission line 7-8. This causes a thermal overload
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on that line and leads to its tripping. If we assume that the RAS is already armed, i.e generation

at bus 2 greater is than a specified threshold, the coordinated attack actions are:

• Creating a data integrity attack to trip Relay 2 which protects line 7-5 to activate the

RAS.

• Creating a DoS attack to prevent the GOOSE trip command to the generation unit at

bus 2 to result in a thermal overload on line 7-8 and cause it to trip out.

By looking at Figure 5.10, we can explain how the RAS operates by walking through the

sequence of events and IEC 61850 messages being exchanged between the devices associated

with this protection scheme. Generally, the control center operator can manually arm/disarm

the RAS through an IEC 61850 message to the RAS controller directly outside the typical flow

of events that are listed below.

1. The Generating station at bus 2 exceeds a threshold, communicates this to the RAS

controller (Relay 1) to arm the RAS.

2. Relay 2 associated with the protected line 7-5 sends a message to the RAS controller to

indicate a fault.

3. RAS controller performs the necessary validation checks and issues a trip command to

the unit at generating station in bus 2 to reduce generation immediately.

4. Because of the successful cyber attack, generation at bus 2 is not reduced, and Relay 3

protecting line 7-8 detects thermal overload.

5. Relay 3 reaches maximum time for withstanding the thermal overload and trips, isolating

the generation station at bus 2.

5.8.1.2 Results - Cyber Impact

We evaluated impacts of two types of DoS attacks that could disrupt the RAS communica-

tion, (1) flooding the switch that carries RAS traffic, (2) flooding the RAS controller directly.
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Figure 5.11 DoS protection scheme impact (switch flooding)

We performed several runs with various traffic rates to determine the amount of DoS traf-

fic required to disrupt the RAS for both the scenarios. We were able to observe that the

RAS scheme could be disrupted through both methods, although targeting the RAS controller

requires significantly less bandwidth compared to flooding the switch.

Figure 5.11 shows the impact of the DoS attack by flooding the Ethernet switch. Fig-

ure 5.11(a) displays that the percentage of times that RAS failed based on various DoS attack

rates. It is to be noted that as traffic hits 50 Mbps the RAS fails 50% of the time, while at

greater attack rates the RAS fails consistently. Figure 5.11(b) displays averaged time for the

RAS communication to travel from the relay to the RAS controller and back (note: these re-

sults only include successful RAS operations even though they were very delayed, as in several

other cases the RAS communication never completes due to the flooding). Although the RAS

only fails after not receiving the communication within 1 second, our results show that either

the communication occurred within 200 ms or the RAS failed. This type of behavior is likely

explained by Ethernet’s collision detection exponential back-off and eventual collision timeout.



www.manaraa.com

98

Figure 5.12 DoS protection scheme impact (relay flooding)

Figure 5.12 shows the results for the case where the RAS controller is directly flooded.

Figure 5.12 shows that the RAS could be disrupted with significantly less bandwidth by directly

targeting the relay. Figure 5.12(a) shows that traffic around 1.5 Mbps is sufficient to disrupt the

RAS 60% of the time, while as traffic reaches 2 Mbps the RAS continually fails. Figure 5.12(b)

displays the average delay of the RAS during successful runs.

5.8.1.3 Results - Physical system impact

Figure 5.13 and Figure 5.14 show the impacts of the coordinated attack on the power

system. Specifically, Figure 5.13 shows how the system voltages are impacted and Figure 5.14

shows how the line power flows and the generation are impacted as a result of the attack. Each

of these figures have two ovals highlighting the two events which constituted the attack. The

first event represents the tripping of line 7-5 due to an attack, and the second event represents

the tripping of line 7-8 due to the DoS attack on RAS.
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Figure 5.13 Impact of attack on system voltages
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Figure 5.13 shows that the tripping of line 7-5 did not cause much impact on the system

voltages and the voltages at all the buses stayed close to 1.0 p.u. Whereas, after the tripping

of line 7-8, generator two was completely islanded from the grid and this impacted the voltages

at several buses significantly.

Figure 5.14 Impact of attack on generation and line flows

From Figure 5.14, we can observe that the tripping of line 7-5 changed the generation

in all three generators by a small amount, but it overloaded the line 7-8 significantly. This

prevented the generation reduction as per the RAS and eventually it led to the tripping of

line 7-8. As mentioned before, it is to be noted here that the tripping of line 7-8 completely

isolates generator 2 from the system. Therefore, it would result in a huge loss of generation

which impacted the frequency profoundly. Such a scenario of generation loss in a real power

system could potentially cause some frequency related problems and could potentially lead to

under-frequency load shedding.
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5.8.2 Coordinated Attack Experimentation on Wide-Area Protection and Control

Applications - AGC and RAS

In this section, we present a detailed case study of a coordinated cyber attack performed on

two WAMPAC applications, namely AGC, and a generator rejection RAS on the PowerCyber

testbed [92]. Figure 5.15 shows the implementation architecture for the use case scenario in

this case study.

Figure 5.15 Implementation architecture of use case scenario on the PowerCyber testbed

The standard IEEE 9-bus power system model is implemented in the Real Time Digital

Simulator (RTDS). The analog measurements and control signals corresponding to the AGC

algorithm are communicated from/to the RTDS to/from the control center via the substation

RTU over the DNP3 protocol. Figure 5.15 shows only one RTU for simplicity. Two physical

relays Relay 1 and Relay 2 in the testbed are utilized for implementing the RAS scheme along

with the RTDS. The relays and RTDS exchange GOOSE messages similar to real substation

implementations to communicate the status signals when a relay trips or in order to send

generation rejection commands to the generating stations in the RTDS model. The relays in
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the testbed are mapped to control breakers in the RTDS power system model enabling real-

time, hardware-in-the-loop experimentation. Therefore, actions such as data integrity attacks

on the cyber layer, and/or DOS attacks on the communication layer can be observed in the

power system model instantaneously.

Figure 5.16 shows the IEEE 9-bus model along with the control areas for AGC algorithm,

and also the location of the generator rejection RAS that has been implemented. The relays on

the testbed are mapped to Rc, and R1 in the power system model respectively. As part of the

experimental scenario, we have also implemented line overload protection on the critical trans-

mission lines, and under-frequency load shedding (UFLS) similar to real-world implementations.

The relay R2 corresponding to overload protection in the power system model is modeled inside

RTDS. We leveraged the communication modules in RTDS for exchanging the real-time simu-

lation data using the DNP3 protocol (Tie-line power flow and frequency measurements), and

GOOSE protocol (relay status, RAS generator rejection command) respectively. This enables

a realistic implementation of AGC and RAS functions similar to real-world settings.

Figure 5.16 IEEE 9-bus model with AGC control areas and RAS location
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In this case study, we only consider the AGC functioning with respect to Area 1 as shown in

Figure 5.16 for simplicity. The associated tie-line flows for Area 1 are flows on transmission lines

4-5 and 6-9. According to AGC operation, any load change on Bus 6 would be addressed by

correspondingly adjusting the mechanical turbine input power for generator G1 corresponding

to the ACE value.

We have implemented the generator rejection RAS to decrease the generation level of G2

when either line 7-8 or line 7-5 is out of service and the power output from G2 is over a

certain threshold. For example, if line 7-5 is tripped due to a natural or malicious event, the

relay corresponding to line 7-5 (R1) will send out a status change alert to the RAS controller

(Rc). On the condition that the RAS is currently armed (when G2 is over a pre-determined

threshold), the RAS controller will send a command to G2 to ramp it down by a preset value.

After the ramping down command is successfully carried out, the overload on line 7-8 due to

the tripping of line 7-5 would be alleviated.

Table 5.1 IEEE 9-bus system base case

Line Power Flow (MW) Generator Output (MW) Load Value (MW)

Line 7-8 42.34 Gen 1 150.3 Load 1 90

Line 7-5 37.71 Gen 2 80.1 Load 2 125

Line 4-5 87.65 Gen 3 85.4 Load 3 100

Line 4-6 62.61 - - - -

Line 9-6 27.53 - - - -

Line 9-8 57.84 - - - -

As line overload protection is often armed for critical transmission lines, when the line flow

goes beyond the secure level for a certain amount of time, the relay associated with line 7-8

(R2) will trip the line for self-protection. In this case study, overload protection is installed only

for line 7-8 and line 7-5. As a last defense measure to prevent system frequency from causing

system islanding, UFLS is configured as to shed 70 MW load from Bus 5 with 2 seconds

delay when system frequency goes below 59.7 Hz and to further shed another 40 MW more

immediately if the frequency is below 59.6 Hz. The base case of the IEEE 9-bus system is listed
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in Table 5.1, and the configuration of line overload protection, RAS and UFLS in Table 5.2.

The coordinated attack vector that was implemented for the case study has been described in

the following paragraphs.

Table 5.2 RAS and UFLS configuration

Scheme Arming

condition

Trigger condition Action

RAS for G2 P2 > 85 MW Either line 7-8 or line 7-

5 is out of service

Ramp down G2 by 40

MW.

UFLS in area 2 Always Frequency < 59.7 Hz Shed local load by 70

MW with 2s delay.

UFLS in area 2 Always Frequency < 59.6 Hz Shed local load by 40

MW with no delay.

Overload protec-

tion for line 7-8 or

line 7-5

Always Flow on the remaining

single line > 70 MW for

more than 20 s

Trip the overloaded

line.

5.8.2.1 Coordinated Attack Vector

In practice, RAS are seldom used, as the condition to arm the RAS is satisfied only under

heavy loading conditions such as peak summer loads. But when under peak load, RAS would

be enabled to maximize transmission line utilization. In our case study, the generation level

of G2 is very close the arming threshold in the base case. As shown in the Table 5.1, the

generation level of G2 has only a 5 MW margin for the RAS to be armed. The coordinated

attack vector consists of the following actions:

1. Man-in-the-middle (MITM) attack – The attacker compromises the tie-line flow and

frequency measurements of Area 1 as they are in transit between the RTU and the control

center. This MITM attack sends spoofed measurements to the control center resulting

in Area Control Error (ACE) values that decrease the generation of Area 1, i.e., G1 will

decrease its power output gradually. This causes the other generators to increase their

output due to the governor actions to counteract the drop in system frequency. This

increases generator G2s output above its threshold, effectively arming the RAS.
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2. Data integrity attack – The attacker trips line 7-5 (R1) by sending a trip command to

Relay 2 in the testbed after the RAS gets armed. This initiates the RAS sequence, where

R1 sends a status update to the RAS controller Rc. Rc checks if the RAS is armed, and

sends a generator rejection command to the generation controller for G2 (modeled inside

RTDS). If this command does not reduce the generation within a certain amount of time,

overload protection relay (R2) will trip line 7-8 and isolate generator G2 from the rest of

the system.

3. Denial of Service (DoS) attack – The attacker blocks the RAS generation rejection

command sent from the RAS controller Rc, which should ramp down G2. This is achieved

by carrying out a DoS attack on the relay Rc. As G2 does not ramp down due to the

DoS attack, overload protection relay R2 times out and trips the line 7-8.

The dotted arrows in Figure 5.15 show the implementation of the attack vector on the

PowerCyber testbed.

5.8.2.2 Impact Analysis

Figure 5.17 and Figure 5.18 show the various impacts of the coordinated attack on AGC

and RAS. The top subplot in Figure 5.17 shows the variation of system frequency with time

and the bottom subplot shows the corresponding variation of critical tie-line power flows on

lines 7-8, 7-5 and 4-5. Similarly, the top subplot in Figure 5.18 shows the variation of voltages

at buses 4, 5, 7, and 8 respectively as they are involved in the attack vector. The bottom

subplot in Figure 5.18 shows the output of the three generators and the load in area 2 during

the entire scenario.

The timeline of all the major events in this attack vector are as explained below:

1. AGC measurement spoofing attack is carried out 8 s after simulation begins, and this

causes G1’s output to reduce slowly. Consequently, G2’s output increases due to governor

action and eventually crosses the threshold to arm the RAS for G2 at around 28 s.
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2. R1 (Relay 2) is tripped by the attacker at around 28s almost instantaneously after the

RAS is armed. At the same time, the attacker also floods the RAS controller Rc (Relay

1).

3. Due to the DoS attack, the generator G2 does not ramp down and therefore around 48 s,

line 7-8 is tripped by overload protection (R2) and G2 is completely separated from the

system.

4. System frequency decreases sharply due to a significant loss in generation, which triggers

both the UFLS stages. After 110 MW load out of the total 125 MW being tripped, the

system frequency finally recovers to 60 Hz.

All the subplots in Figure 5.17 and Figure 5.18 have been annotated with these four major

phases as mentioned in the timeline to aid the readers understanding.

Frequency impacts: From the top sub-plot in Figure 5.17, we can see that the initial AGC

attack (Phase 1) causes a steady decline in system frequency. The triggering of the RAS

by tripping R1 (Phase 2) causes a minor disturbance, but the governor actions restore the

frequency to a small extent. After the overload protection trips the line 7-8 (Phase 3), there

is a sharp drop in frequency, as G2 is isolated, thereby, causing a huge deficit in generation.

Finally, UFLS schemes kick in (Phase 4) to shed loads in two major chunks to restore the

frequency back to normal.

Tie-line flow impacts: From the bottom sub-plot of Figure 5.17 we can see the impacts

on the tie-line flows during the attack. As mentioned previously, the AGC attack (Phase 1)

causes a reduction of generation in Area 1, which decreases the flow on line 4-5 steadily. After

the line 7-5 is tripped (Phase 2), the power flow on line 4-5 increases again due to governor

action to supply the load at bus 5. This is also accompanied by a loss in frequency. As a result

of the DoS attack, the overload on line 7-8 (Phase 3) does not reduce until it is tripped out

by thermal overload protection. Finally, the power flow on line 4-5 is reduced after the UFLS

sheds the load (Phase 4).

Generation & Load impacts: The bottom subplot of Figure 5.18 shows the impact of the

generation outputs and the load during the coordinated attack. The AGC attack clearly can
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Figure 5.17 System frequency (Hz) and tie-line flows (MW) during the coordinated attack
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be observed as a steady decrease in the output of G1, corresponding to a steady increase in

generators G2 and G3 due to the governor actions (Phase 1). All generators experience a minor

fluctuation when the RAS is triggered (Phase 2). Due to the DoS attack, generation output of

G2 does not decrease until it is isolated completely due to tripping of line 7-8 (Phase 3). UFLS

kicks in to shed a bulk of the load at bus 5, which reduces the output of the generator G1 that

was feeding the load (Phase 4). Overall, this coordinated attack isolated G2 from rest of the

system, and caused a forced load shedding of 110 MW in Area 2.

Voltage impacts: From the top subplot of Figure 5.18, we can observe that the impacts on

system voltages are much more severe than generation outputs. The line trip (Phase 2) creates

a temporary voltage fluctuation, which damps out quickly. However, after the UFLS kicks in

(Phase 4) there is a huge voltage fluctuation as the magnitude of load shedding is significant.

In this case study, we have not modeled any voltage sensitive loads on the system. However,

the evaluation of voltage impacts on voltage sensitive loads such as induction motors would

reveal further insights into the stability of the system during such attacks. These would be

explored as part of our future work.

5.8.3 Stealthy Cyber Attack-Defense Experimentation on Wide-Area Control Ap-

plication

In this case study, we describe a testbed-based implementation and performance evalua-

tion of Attack-Resilient Control (ARC), in an attempt to validate the results from an earlier

simulation-based study [83]. This work leverages some of the implementation efforts done for a

similar experimental case study documented in [93]. The experiment overview, implementation

and results that are described below as part of this case study are published in [94].

The rest of this section is organized as follows. First, we provide a brief overview of AGC

operation and stealthy attack templates on AGC that cause UFLS. Then, we provide a brief

overview of ARC, which is described in detail in [83]. Next, we describe the implementation

architecture of the experiment on the PowerCyber testbed. Finally, we present results from

attack-impact and attack-defense studies.
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5.8.3.1 Background on AGC Operation

The AGC algorithm is a wide-area control mechanism that maintains generation and load

balance in each balancing area (BA) [95]. The AGC algorithm serves two critical functions -

i) maintain system frequency at 60 Hz, and ii) maintain tie-line flows at scheduled values. In

order to achieve this, the AGC calculates Area Control Error (ACE) every 2-8 seconds based

on tie-line power flow and frequency measurements received from SCADA. The ACE, which is

used to adjust generation set points, is calculated by the following equations.

ACE = ∆Ptie + β∆f (5.1)

∆Ptie = Pact − Psch (5.2)

∆f = fact − fnom = − ∆Pload

Σ(1/R+D)
(5.3)

In the above, ∆Ptie represents the difference of scheduled tie-line power flows (Psch) from

actual tie-line power flows (Pact), ∆f represents the deviation of the actual frequency (fact) from

nominal (fnom = 60 Hz), β represents the balancing authority bias to help system frequency,

∆Pload represents the load change in the BA, R represents the droop constant of each generator

in the system, D represents the frequency sensitivity of loads in the system [95].

A positive ACE indicates that the generators in the BA need to ramp down, and vice-versa.

Depending on the ACE received, a subset of the generators in the BA regulate their outputs

constantly meeting tie-line power flow and frequency constraints. The inherent dependence of

both the measurement and the control data on wide-area SCADA communication make the

AGC algorithm vulnerable to different types of cyber attacks that would potentially impact

system frequency.

5.8.3.2 Data Integrity Attack Model

Earlier research efforts [96, 83] have shown how the tie-line and frequency measurements

may be strategically modified by a knowledgeable attacker to cause system frequency to deviate

from nominal value without being detected. In summary, this stealthy attack strategy involves

modifying the frequency and tie-line measurements such that their change obeys the underlying
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physics of the system. Such an attack could be executed by the attacker with some knowledge

about the system parameters and constants [83]. For example, the attacker would send tie-

line and frequency measurements that are higher than their actual values, causing the AGC

to calculate an ACE that would reduce the generation below the actual load requirement.

This would result in inadequate generation leading to a gradual decline in system frequency.

Specifically, as part of the experimentation in this paper, we consider two attack models (scaling

and ramp attacks) as defined in [83], and mathematically represented in Equations 5.4 to 5.7.

• Scaling attack – This attack vector involves scaling of the tie-line power flow measure-

ments (Ptie act) based on a scaling attack parameter λscaling, and then calculating the

corresponding malicious frequency measurement. Such an attack would instantly cause

system frequency to deviate from 60 Hz.

• Ramp attack – This attack vector involves adding a time-varying ramp signal to Ptie act

based on a ramp attack parameter λramp, and calculating the corresponding malicious

frequency measurement to cause a slow drift of the system frequency.

Ptie scaling = (1 + λscaling) ∗ Ptie act (5.4)

Ptie ramp = Ptie act + λramp ∗ t (5.5)

∆Ptie attack = Ptie scaling/ramp − Ptie act (5.6)

fattack = fact −
∆Ptie attack

Σ(1/R+D)
(5.7)

5.8.3.3 Attack-Resilient Control Algorithm for AGC

Figure 5.19 shows a schematic of how ARC integrates with the AGC algorithm to detect and

mitigate attacks through a combination of domain-specific, model-based anomaly detection and

mitigation. The ARC algorithm validates the ACE received from AGC using anomaly detection

and triggers model-based mitigation if an anomaly is detected.
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Figure 5.19 Attack-resilient control for AGC

Anomaly Detection

The anomaly detection component examines the real-time ACE (ACER) to identify cor-

rupted data using two rules. Rule 1 is intended to identify attacks that attempt to trigger an

instantaneous change, as in the case of a scaling attack. It compares ACER against a range

of acceptable ACE values to flag anomalies. This range is determined using offline statistical

analysis of model-generated ACE values based on real-time load forecast data [83]. The tight-

ness of the bound for Rule 1 is driven by δ1. The larger the value of δ1, the wider is the range

of acceptable real-time ACE (vice-versa). Rule 2 is intended to catch attacks such as the ramp

attack, where small changes are injected in regular intervals to result in a significant change

over a time period. Rule 2 compares the cumulative ACE from real-time operation (ΣACER)

to the cumulative ACE from the ACE generated by offline AGC (ΣACEM ). If the value of

ΣACER exceeds ΣACEM by a factor of δ2, an anomaly is flagged.

The tuning of anomaly detection algorithm involves selecting values for δ1 and δ2 that result

in the least possible false positive and negative rates. From the system operator’s perspective,

the goal is to be able to detect scaling and ramp attacks with the least possible attack param-

eters - λSmin and λRmin . This will enable ARC to detect the entire range of ramp and scaling

attacks. Towards this end, the following steps are to be performed periodically.
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1. Generate a measurement set that contains a mixture of true and corrupted values using

the scaling and ramp attack models, with attack parameters λSmin and λRmin .

2. Calculate FP and FN rates for a range of δ1 and δ2.

3. Select δ1 and δ2 for acceptable FP and FN rates.

Attack Mitigation

When ARC detects an anomaly, model-based attack mitigation is triggered. Attack mitiga-

tion essentially uses ACEM instead of the ACER for AGC operation until trust in the SCADA

measurements is regained. Thereby, model-based mitigation restores operating frequency close

to nominal values limiting the attack impacts on the system loads.

5.8.3.4 Testbed Setup

Figure 5.20 shows the implementation architecture for our attack-defense experiment on

the PowerCyber testbed. The IEEE 9-bus power system model is simulated on the RTDS. The

measurements and control signals pertaining to the AGC algorithm are exchanged between

the control center and the RTDS using DNP3 protocol. In our case, the RTDS serves as a

DNP3 slave similar to a real substation, and the control center serves as the DNP3 master that

initiates periodic polling of the substation to receive measurements and send control signals.

The ARC algorithm runs at the control center in conjunction with the AGC to detect and

mitigate stealthy attacks.

As shown in Figure 5.20, we implemented the stealthy attacks on AGC through a Man-in-

the-Middle (MITM) attack. This MITM attack is performed by executing an ARP poisoning

attack using the ScaPy tool [97]. ARP poisoning enables the attacker to access all DNP3

packets flowing between the simulator (substation) and the control center. By accessing the

tie-line power flow and frequency measurements, the attacker is able to implement the scaling

and ramp attacks.

Figure 5.21 shows the IEEE 9-bus system divided into 3 BAs. For our experiment, we

considered attacks on the AGC algorithm in Area 1. Tie-lines L45 and L69 connect Area 1
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Figure 5.20 PowerCyber testbed configuration
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with Areas 2 and 3, respectively. We assumed a constant value for scheduled tie-line flows for

L45 and L69. For simplicity, the generation and load level of Areas 2 and 3 were maintained

as constant. For Area 1, the output of Gen 1 was dispatched every 5 minutes. Based on the

load forecast, the real-time load in Area 1 (at Bus 6) was updated every second. In order to

generate the real-time load, we added the forecasted load with a random forecast error, which

follows a truncated normal distribution [74]. The AGC algorithm was executed once every 10

seconds to produce an ACE for Gen 1.

Figure 5.21 IEEE 9-bus system with 3 BAs

5.8.3.5 Experimental Results

Based on the methodology outlined in Section 5.8.3.2, the attack ranges presented in Ta-

ble 5.3 were determined for ramp and scaling attacks. As the attacker would seek to cause

maximum impact at the earliest, λSmax (0.0570) and λRmax (0.0245) were used for experimen-

tation. On the contrary, from an operator’s perspective, the attack detection algorithm was
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tuned based on λSmin (0.0253) and λRmin (0.0180), as the goal would be to detect even the

attack with the least impact. Based on these attack parameters, the values of δ1 and δ2 for

rules 1 and 2 of the anomaly detection algorithm were tuned to achieve the lowest FP and FN

rates and are shown in Table 5.4.

Table 5.3 Attack parameters for experimentation

Attack Type λmin λmax

Scaling 0.0253 0.0570

Ramp 0.0180 0.0245

Table 5.4 Anomaly detection bounds for rules 1 and 2

Rule Lower Bound Upper Bound

Rule 1 −0.0328 pu 0.0147 pu

Rule 2 −0.0368 pu 0.0368 pu

Based on the above parameters for attack and defense, we performed a detailed experiment

on the PowerCyber testbed to evaluate the effectiveness of ARC algorithm. We first ran tests to

demonstrate the disruption of ARC-less AGC operation using scaling and ramp attacks. Then,

we re-executed the attack scenarios with ARC in place to capture its effectiveness. In each

case, the system frequency and active system load were recorded. In all of the scenarios, we

assumed that the AGC algorithm runs once every 10 seconds, with minor system load changes

occurring every second. We also modeled an under-frequency load shedding (UFLS) scheme

similar to real-world deployments, that sheds system load in two stages - one at 59.5 Hz and

other at 59.4 Hz, respectively.

Figures 5.22 and 5.23 show the system frequency and load during the scaling and ramp

attacks on AGC measurements corresponding to Area 1. In both figures, the initial conditions

are such that the AGC is working with actual measurements, keeping system frequency close to

60 Hz. For the scaling attack (Figure 5.22), the attack starts at around 35 s, when the attacker

scales Ptie act and f measurements, causing the ACE to constantly push the system generation

lower than actual requirement, thereby driving the frequency below 60 Hz.
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Figure 5.22 System frequency and load during scaling attack without ARC
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Figure 5.23 System frequency and load during ramp attack without ARC

At around 65 s, the system frequency hits 59.5 Hz to trigger the first stage of UFLS. After

a chunk of load is shed, the system frequency improves briefly, but the attacker continues to

drive the system frequency away from safe operating conditions. At around 105 s, the system

frequency hits 59.4 Hz to trigger the second stage of UFLS to further shed a second chunk of

load. At this point, a major portion of the system load is lost (about 40%) causing a significant

impact.

The time line of events is similar for the ramp attack (Figure 5.23). At around 60 s the

attacker modifies the AGC measurements by adding a time varying ramp to slowly push the

system frequency away from 60 Hz. At around 105 s, the first stage of UFLS is activated, and

similar to the previous case frequency improves briefly only to reduce further and also hit the

second stages of UFLS at around 145 s. One of the key differences between the scaling and

ramp attacks is the time it takes for the system frequency to hit UFLS frequency. As expected,

the scaling attack affects the measurements instantaneously pushing the frequency down faster

than the slowly varying ramp attack.
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Figure 5.24 System frequency and load during scaling attack with ARC

Figure 5.25 System frequency and load during ramp attack with ARC
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Figure 5.24 and Figure 5.25 show the same attack scenarios with the ARC algorithm im-

plemented at the control center. For the scaling attack (Figure 5.24), the attack begins at

around 40 s. The frequency begins to drop a little initially, however, ARC detects the attack

and switches to model-based AGC operation at around 50 s. This ensures that the system fre-

quency does not decline further and performs better than the case without mitigation. Because

load forecasts typically are less accurate, we have a non-zero frequency error with model-based

AGC operation. For the ramp attack (Figure 5.25), the attack begins at around 61 s and ARC

detects the attack at around 80 s, after which it switches to model-based AGC operation.

As expected, the ARC algorithm takes longer to detect a slowly varying ramp attack as its

detection is based on a sequence of ACE control signals, as opposed to detection using a single

ACE value for the scaling attack. The time that it takes to detect a ramp attack is closely

related to the design parameter δ2, which has been chosen to minimize FP and FN based on

our experimental study.

In this section, we validated the ARC algorithm for AGC using the PowerCyber testbed. We

implemented a realistic MITM attack on AGC measurements to impact system frequency and

cause forced load shedding. We then validated the performance of ARC for scaling and ramp

attacks. Our experiments showed that ARC was able to detect and mitigate attack impacts by

ensuring that system frequency was maintained within acceptable bounds. Thereby, we were

also able to corroborate the results obtained from a simulation-based implementation of the

ARC algorithm [83].

5.8.4 Proof-of-Concept Testbed Federation

This section briefly describes the CPS testbed federation that was demonstrated at the

Smart America Challenge Expo held in Washington D.C., on June 1, 2014 [84]. As part of

this effort, the PowerCyber cyber-physical testbed at Iowa State University (ISU) was success-

fully federated with University of Southern California’s DETER testbed to perform realistic,

scalable and high-fidelity attack/defense studies on Wide-Area Protection. Figure 5.26 shows

the implementation architecture of the testbed federation between ISU and DETER. The two
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testbeds were interconnected using a VPN tunnel to establish seamless network connectivity

between control center, substations and field devices that were distributed on the federated

testbed.

Figure 5.26 Proof-of-concept implementation architecture of CPS testbed federation

The control center and a few substations were implemented inside the DETER testbed. The

DETER testbed environment allows the configurability of the topology of the cyber network and

therefore, the connectivity between control center and the substations were setup corresponding

to realistic configurations. Some of the substations were hosted inside the ISU PowerCyber

testbed. Both the substations running inside DETER and the PowerCyber testbed shared the

physical relays Relay 1 and Relay 2 located inside the PowerCyber testbed. The gateway nodes

ensured that all network traffic was tunneled across the testbeds. The relays were interfaced to

the RTDS at PowerCyber through the GOOSE protocol. The control center communications

with the substations used the DNP3 protocol. The substation RTUs used the IEC 61850

MMS protocol for communicating with the relays. In the experimental scenarios, the attack

originated from inside the DETER testbed and was tunneled into the PowerCyber testbed to

target the relays as shown by the dotted arrows in Figure 5.26.
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As part of the defense strategy, perimeter defense was employed and therefore each sub-

station network had an Intrusion Detection System (IDS), which filtered malicious network

traffic. The visualization node was running an OPC server, which talked to the substations to

gather data about the status of the relays and fed it to a visualization engine. The visualiza-

tion engine overlaid relay status information of various lines and attack/defense dynamically

on a map as they occurred. As part of the experimentation, the latencies across the two end

points on the VPN tunnel were measured and the use case was chosen appropriately. This work

was a proof-of-concept to show the value of CPS security testbed federation. More involved

experimentation on this federation architecture was performed to identify average, worst-case

latencies and other constraints for federated experimentation [98]. As part of future work,

additional use cases that demonstrate the value of testbed federation would be pursued.

5.9 Conclusion

This chapter motivated the need for CPS security testbeds, and briefly described the var-

ious testbed design objectives and design tradeoffs for various types of testbeds. Then, the

uniqueness of HIL testbeds over non-real-time, simulation-based testbeds was articulated in

the context of cyber security use cases for WAMPAC. Following that, a top-down methodology

for CPS security testbed design based on specific WAMPAC use cases that included specific

testbed requirements and engineering tasks. A three-layered testbed architecture abstraction

and its application to create an architecture for WAMPAC specific cyber attack-defense ex-

perimentation that addresses targeted research challenges was identified. One of the major

contributions that came out of testbed-based experimentation was the identification of a new

coordinated attack vector for RAS that involved a combination of data integrity and DoS at-

tacks. The chapter also discussed about testbed federation, looking at research challenges,

federation architectures, and WAMPAC specific use cases that could benefit from federation.

Finally, the chapter presented three experimental case studies that showed how CPS secu-

rity testbeds enable realistic attack-defense experimentation on critical WAMPAC applications

such as AGC, RAS that could not be performed on ordinary simulation-based environments.
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Though the chapter did not describe the education and outreach aspects of testbeds, the case

studies that were described were extensively leveraged for educational and outreach activities

to promote workforce training and development in the critical area of CPS for the smart grid.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

As the electric power grid continually evolves into a smarter, cleaner, reliable and resilient

grid, the cyber and physical security of WAMPAC systems, including traditional SCADA and

the recent deployments of PMUs, is more important than ever for the reliability and resiliency

of the grid. The increasing dependence of WAMPAC on cutting-edge substation automation

(hardware and software) and networking technologies has resulted in increased network connec-

tivity. Consequently, it has also increased the potential attack surface. To address this, the need

to go beyond traditional IT infrastructure-based security mechanisms to create a multi-layered

defense approach that encompasses application layer security as well as infrastructure-based

security has been highlighted and prioritized by government agencies such as the DOE, NERC

and NIST. Also identified is the strong need to have cyber-physical security testbed envi-

ronments that support realistic attack and defense experimentation to enable validation and

performance evaluation of the novel security mechanisms that are developed.

As part of this dissertation, two major research components were described to address these

research needs. The first component, Attack-resilient State Estimation, addressed the vulnera-

bility of state estimation to stealthy cyber attacks along with two complementary approaches

to mitigate the effect of attacks to enhance its resilience. Specifically, a topology-based attack

vector that bypassed bad data detection methods and causes loss of system observability was

identified. To mitigate the stealthy attacks on measurements and topology, an offline attack-

resilient measurement design methodology was presented. This methodology increased the

robustness of state estimators against false data injection, topology-based, and DoS attacks.

In addition to the offline mitigation approach, an online attack-resilient anomaly detection
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method was described that utilized load forecasts, generation schedules, and synchrophasor

data to detect measurement anomalies that were created by stealthy attacks.

The second component, Testbed-based Experimentation and Performance Evaluation, ad-

dressed the need to architect, develop, and leverage cyber-physical security testbed environ-

ments specifically for performing realistic attack-defense experimentation for WAMPAC use

cases along with three experimental case studies. As part of this component, an overview of

testbed design objectives and design tradeoffs were discussed for different types of testbeds with

a focus on how they could support realistic experimentation for WAMPAC use cases. Then,

a methodology for CPS security testbed development based on specific WAMPAC use cases

was detailed. A three-layered WAMPAC specific testbed architecture to address critical re-

search challenges was presented. In order to address scalability limitations associated with HIL

testbeds, a detailed qualitative analysis of testbed federation that covered research challenges,

federation architectures, and WAMPAC specific use cases that could benefit from federation

was discussed. Finally, three experimental case studies that involved realistic coordinated cyber

attacks on critical WAMPAC applications such as AGC, RAS were described in detail. In one

of the case studies, a novel coordinated attack vector for RAS was identified that involved a

combination of data integrity and DoS attacks, leveraging both spatial and temporal coordi-

nation. As part of this contribution, the hypothesis that timing of attack actions also plays a

critical role in the attack impact severity was experimentally validated using the PowerCyber

testbed.

6.2 Future Work

The theoretical and applied research contributions as part of this dissertation address spe-

cific research gaps and milestones (under the roadmap thrust: “Developing new protective mea-

sures to reduce risk and managing incidents”) that have been identified in the DOE roadmap

for Energy Delivery Systems Cybersecurity [12]. As identified in the roadmap, more work needs

to be done to address several key topics such as novel methods for risk assessment that capture

cyber attack threat and impacts, attack detection and mitigation techniques that leverage cyber

and physical properties of the grid without interfering with critical energy delivery functions



www.manaraa.com

126

of the grid. There are several potential directions that could be pursued to extend the work

discussed in this dissertation as part of future work.

6.2.1 Cyber-Physical Moving Target Defense (MTD)-based Approaches for Attack-

Resilient State Estimation

In order to further enhance the attack-resilience of the state estimator to stealthy cyber

attacks future work that looks at developing cyber-physical MTD-based approaches could be

pursued. MTD-based approaches leverage redundancy and randomization to create a dynamic

attack surface that increases the difficulty of the attack. One potential approach to apply MTD

would be to leverage the redundancy in the measurement set used for SE to select randomized

measurements for every execution interval. This variation in the measurement set would make

the execution of a stealthy attack very difficult, in addition to the fact that the attacked

measurements may be ignored as part of the measurement set. This randomization could be

performed based on cyber alerts generated so as to choose the appropriate measurements to

randomize.

Similarly, a line of future work that could be explored is to randomize the formulation of

state estimator or the bad data detection method-based on cyber layer alerts. It is commonly

known that different formulations of state estimators have differences in convergence, stability

and robustness.

Another potential CPS MTD-based approach that could be pursued is to develop a strategy

to adjust the weights of the measurements used in the estimation process based on cyber layer

alerts dynamically. By adjusting the measurement weights appropriately, the impact of certain

bad measurements could be minimized. However, this strategy should also take into account

various practical issues such as convergence and leverage points to ensure the state estimates

are not adversely affected.

6.2.2 Machine Learning Techniques for CPS Model-based Anomaly Detection

The online anomaly detection algorithm that was described as part of the dissertation

described a statistical characterization approach that utilized load forecasts and available PMU



www.manaraa.com

127

data to predict state estimates for comparison. As an extension of this approach, advanced

machine learning techniques that fuse cyber layer alerts with physical measurement anomalies

to perform cyber-physical model-based anomaly detection techniques for state estimation would

be a potential line of future work.

6.2.3 Game-Theoretic Methods for Cyber-Physical Security of WAMPAC

In general, the application of game-theoretic tools for cyber-physical security of WAMPAC

would not necessarily help in development of new attack detection or mitigation methods,

but would help in performing quantitative risk assessment and operational planning based on

attacker behaviors. Depending on the formulation of the strategic game, a game-theoretic

approach can help identify the most likely attack scenarios by characterizing the impacts of

different types of cyber attacks and also helps to identify mitigation measures, either in terms

of security reinforcements or in terms of developing new planning approaches to reduce the

impact, based on how the problem is formulated.

A potential line of future work that could be explored would be to apply game-theoretic

tools to develop attack-aware operational planning approaches that are capable of handling

(N-k) contingencies in the presence of coordinated attacks. Such an approach would result

in obtaining dynamic contingency sets based on the solutions of the game formulations for a

specified attacker behavior.

Another line of research using game-theoretic tools for cyber-physical security of WAMPAC

would be to develop a mathematical framework for identifying attacker bounds based on the

balance that exists between attack costs and their impact for various attack types on WAMPAC

applications.

6.2.4 Cyber Security of PMU-based WAMPAC Applications

With more and more utilities deploying PMUs increasingly in their systems, the cyber

security of PMU network infrastructure and the data they carry will become critical. As

synchrophasor-based applications are still at nascent stages in terms of practical deployments, a

lot of research focuses only on solving existing problems in cyber-physical security of WAMPAC
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applications using new PMU data under the assumption that they are secure. Though there are

several avenues along this direction such as the application of PMU data to develop anomaly

detection methods, PMU-based linear state estimators, PMU placement problems considering

multiple objectives such as security, bad data detection, observability, etc., there are several

open research problems pertaining to the security of PMU data itself. Future research in this

area includes the vulnerability assessment of PMU data and its impact analysis specifically

pertaining to emerging WAMPAC applications such as oscillation monitoring, angle monitoring,

etc.,

6.2.5 Modeling and Experimentation to Improve Testbed Federation

The proof-of-concept work on CPS testbed federation could be extended in the future to

include realistic federated implementation of other WAMPAC specific use cases such as AGC,

SE, and even other emerging PMU-based applications such as oscillation monitoring. Most of

the federation use cases identified rely on a centralized power system simulation in real-time

along with a distributed cyber layer across remote testbeds. In terms of new contributions

toward modeling in federation, work could be done to identify novel methods to perform system

equivalencing enabling the distributed implementation of power system models across real-time

simulators such that highly scalable real-time HIL experiments could be performed without

loosing too much on modeling fidelity.
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